Skip to main content
Log in

MEMS Slow-Wave CPW Phase Shifter for mm-Wave Applications

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

MEMS-based phase shifters show the best performance in terms of figure of merit, but their footprints are usually large and it is difficult to achieve several bits. This paper demonstrates a miniaturized phase shifter based on slow-wave CPW and MEMS that occupy 0.47 mm2. A total phase shift of 152° was obtained with a maximum insertion loss of 3 dB, resulting in a figure of merit of 50°/dB at 60 GHz. The 3-bit device showed an insertion loss variation of 1.3 dB and return loss better than 13 dB. The pull-in and pull-out voltages were measured to be 17 V and 10 V, respectively. The presented device is well suited for mm-wave phased array applications. Thanks to the proposed concept, more bits could be easily achieved and much higher frequencies could be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Gong, . H. Shen and N. S. Barker, A 60-GHz 2-bit switched-line phase shifter using SP4T RF-MEMS switches, IEEE Trans. Microw. Theory Techn., vol. 59, no. 4, pp. 894-900, April 2011.

    Article  Google Scholar 

  2. H.-T. Kim, . J.-H. Park, . S. Lee, . S. Kim, . J.-M. Kim, Y.-K. Kim and Y. Kwon, V-band 2-b and 4-b low-loss and low-voltage distributed MEMS digital phase shifter using metal-air-metal capacitors, IEEE Trans. Microw. Theory Techn., vol. 50, no. 12, pp. 2918-2923, Dec. 2002.

    Article  Google Scholar 

  3. T. Quemerais, D. Gloria, D. Golanski, and S. Bouvot, High-Q MOS varactors for millimeter-wave applications in CMOS 28-nm FDSOI, IEEE Electron Device Lett., vol. 36, no. 2, pp. 87-89, Feb 2015.

    Article  Google Scholar 

  4. B. Biglarbegian, M.-R. Nezhad-Ahmadi, M. Fakharzadeh and S. Safavi-Naeini, A Wideband 90° continuous phase shifter for 60GHz phased array transceiver in 90nm CMOS technology, in European Microwave Integrated Circuits Conference (EuMIC), Roma, Italy, Sept. 29 – Oct. 1 2009, pp. 28-29.

  5. F. Meng, K. Ma, K. T. Yeo, S. Xu, C. C. Boon, and W. M. Lim, Miniaturized 3-bit phase shifter for 60 GHz phased-array in 65 nm CMOS technology, IEEE Microw. Compon. Lett., vol. 24, no. 1, pp. 50-52, Jan. 2014.

    Article  Google Scholar 

  6. W. H. Woods, A. Valdes-Garcia, H. Ding and J. Rascoe, CMOS millimeter wave phase shifter based on tunable transmission lines, Proceedings of the IEEE 2013 Custom Integrated Circuits Conference, San Jose, CA, 2013, pp. 1-4.

    Book  Google Scholar 

  7. H. Krishnaswamy, A. Valdes-Garcia and J. Lai, A silicon-based, all-passive, 60 GHz, 4-element, phased-array beamformer featuring a differential, reflection-type phase shifter, 2010 IEEE International Symposium on Phased Array Systems and Technology, Waltham, MA, 2010, pp. 225-232

  8. C.-C. Chang; Y.-C. Chen; S.-C. Hsieh, A V-Band Three-State Phase Shifter in CMOS-MEMS Technology, IEEE Microw. Compon. Lett., IEEE , vol.23, no.5, pp.264-266, May 2013.

  9. G. Velu, K. Blary, L. Burgnies, J. Carru, E. Delos, A. Marteau and D. Lippens, A 310°/3.6-dB K-band phaseshifter using paraelectric BST thin films, IEEE Microw. Compon. Lett., vol. 16, no. 2, pp. 87,89, Feb. 2006.

    Article  Google Scholar 

  10. R. De Paolis, F. Coccetti, S. Payan, M. Maglione and G. Guegan, Characterization of ferroelectric BST MIM capacitors up to 65 GHz for a compact phase shifter at 60 GHz, in 44th European Microwave Conference (EuMC), Rome, Italy, 5-10 Oct. 2014, pp. 492-495.

  11. Gaebler, A.; Goelden, F.; Manabe, A.; Goebel, M.; Mueller, S.; Jakoby, R., Investigation of high performance transmission line phase shifters based on liquid crystal, in 39th European Microwave Conference (EuMC), Rome, Italy, Sept. 29 – Oct. 1 2009, pp. 594-597.

  12. C. Fritzsch, F. Giacomozzi, O.H. Karabey, F. Goelden, A. Moessinger, S. Bildik, S. Colpo, R. Jakoby, Continuously tunable W-band phase shifter based on liquid crystals and MEMS technology, in European Microwave Integrated Circuits Conference (EuMIC), Manchester, UK, 9-14 Oct. 2011, pp.522-525.

  13. A.-L. Franc, O. Karabey, G. Rehder, E. Pistono, R. Jakoby and P. Ferrari, Compact and broadband millimeter-wave electrically tunable phase shifter combining slow-wave effect with liquid crystal technology, IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3905-3915, Nov. 2013.

    Google Scholar 

  14. G. Rehder, T. Vo and P. Ferrari, Development of a slow-wave MEMS phase shifter on CMOS technology for millimeter wave frequencies, Microelectronic Engineering, vol. 90, pp. 19-22, Feb. 2012.

    Article  Google Scholar 

  15. A.-L. Franc, E. Pistono, G. Meunier, D. Gloria, and P. Ferrari, A lossy circuit model based on physical interpretation for integrated shielded slow-wave CMOS coplanar waveguide structures, IEEE Trans. on Microwave Theory Tech., Vol. 61, No. 2, pp. 754-763, Feb. 2013.

    Article  Google Scholar 

  16. X.-L. Tang, A.-L. Franc, E. Pistono, A. Siligaris, P. Vincent, P. Ferrari and J. Fournier, Performance Improvement versus CPW and loss distribution analysis of slow-wave CPW in 65 nm HR-SOI CMOS technology, IEEE Trans. Electron Devices, vol. 59, no. 5, pp. 1279,1285, May 2012.

    Article  Google Scholar 

  17. B. Verona, G. Rehder, A. Serrano, M. Carreno and P. Ferrari, Slow-wave distributed MEMS phase shifter in CMOS for millimeter-wave applications, in 44th European Microwave Conference (EuMC), Roma, Italy, 5-10 Oct. 2014, pp. 211 - 214.

  18. R. G. Bovadilla, O. D. Molitor, A. L. C. Serrano and G. P. Rehder, Optimization of RF MEMS phase shifter for microwaves applications, 2017 32nd Symposium on Microelectronics Technology and Devices (SBMicro), Fortaleza, 2017, pp. 1-4.

  19. R. G. Bovadilla, G. P. Rehder, A. L. C. Serrano and P. Ferrari, Distributed MEMS phase shifter for millimeter-wave applications, 28th Symposium on Microelectronics Technology and Devices (SBMicro 2013), Curitiba, 2013, pp. 1-4.

  20. F. Souchon et al., Key improvements of the MEMS switch lifetime thanks to a dielectric-free design and contact reliability investigations in hot/cold switching operations. 2013 IEEE International Reliability Physics Symposium (IRPS), Anaheim, CA, 2013, pp. 6B.2.1-6B.2.8

  21. A. Bautista, A.-L. Franc, and P. Ferrari, Accurate parametric electrical model for slow-wave CPW and application to circuits design, IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4225-4235, Dec. 2015.

    Article  Google Scholar 

  22. J.-J. Hung, L. Dussopt and G. Rebeiz, Distributed 2- and 3-bit W-band MEMS phase shifters on glass substrates, IEEE Trans. Microw. Theory Techn., vol. 52, no. 2, pp. 600-606, Feb. 2004.

    Article  Google Scholar 

  23. P. Blondy, A. Crunteanu, C. Champeaux, A. Catherinot, P. Tristant, O. Vendier, J.L Cazaux, L. Marchand, Dielectric less capacitive MEMS switches, in 2004 IEEE MTT-S International Microwave Symposium Digest, Fort Worth, TX, USA, 7-12 June 2004, pp. 573-576.

Download references

Acknowledgments

This paper was submitted in July 3rd, 2018. The authors would like to thank the Brazilian agencies FAPESP, CNPq, and CAPES; and the French laboratory LAIR CEA-LETI for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo P. Rehder.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehder, G.P., Bovadilla, R.G., Bedoya, F.S. et al. MEMS Slow-Wave CPW Phase Shifter for mm-Wave Applications. J Infrared Milli Terahz Waves 41, 1227–1244 (2020). https://doi.org/10.1007/s10762-020-00731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00731-0

Keywords

Navigation