Skip to main content
Log in

Effect of Reflection on Mode Competition and Multi-Frequency Oscillation in a High-Power Sub-THz Gyrotron: Experimental Observation and Theoretical Analysis

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Equi-distantly distributed multi-peak frequency spectrum was observed in a high-power 300-GHz band gyrotron for the case of strong reflection off the vacuum window. An oscillation mode different from the design mode can oscillate by adjusting the magnetic field in the cavity. However, a large fraction of the output wave is reflected by the vacuum window. The reflected wave returns to the cavity through an internal mode converter. The azimuthal rotating direction of the reflected wave is opposite to that of the oscillating mode. A theoretical calculation of mode competition between the oscillating co-rotating mode and the counter-rotating mode originating from the reflected wave very well reproduces the observed frequency spectrum. The multi-peak frequency spectrum stems from periodic amplitude oscillation caused by the mode competition between the co-rotating mode and the counter-rotating mode. The frequency interval between the peaks is not simply decided by the round-trip time between the cavity and the vacuum window but determined by the period of the amplitude oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Thumm, IEEE Trans. Plasma Sci. 42 (3), 590 (2014).

    Article  Google Scholar 

  2. M.K.A. Thumm, G.G. Denisov, K. Sakamoto, and M.Q. Tran, Nucl. Fusion 59 (7), 073001 (2019).

    Article  Google Scholar 

  3. M. Nishiura et al., Nucl. Fusion 54 (2), 023006 (2014).

    Article  Google Scholar 

  4. Y. Yamaguchi, T. Saito, Y. Tatematsu, S. Ikeuchi, V. N. Manuilov, J. Kasa, M. Kotera, T. Idehara, S. Kubo, T. Shimozuma, K. Tanaka and M. Nishiura, Nucl. Fusion 55 (1), 013002 (2015).

    Article  Google Scholar 

  5. Y. Yamaguchi, J. Kasa, T. Saito, Y. Tatematsu, M. Kotera, S. Kubo, T. Shimozuma, K. Tanaka and M. Nishiura, J. Instrument. 10 (10), C10002 (2015).

    Article  Google Scholar 

  6. T. Saito, Y. Yamaguchi, Y. Tatematsu, M. Fukunari, T. Hirobe, S. Tanaka, R. Shinbayashi, T. Shimozuma, S. Kubo, K. Tanaka and M. Nishiura, Plasma Fusion Res. 12, 1206013 (2017).

    Article  Google Scholar 

  7. T. Saito, S. Tanaka, R. Shinbayashi Y. Tatematsu, Y. Yamaguchi, M. Fukunari, S. Kubo, T. Shimozuma, K. Tanaka and M. Nishiura, Plasma Fusion Res. 14, 1406104 (2019).

    Article  Google Scholar 

  8. T. Saito, S. Tanaka, R. Shinbayashi, T. Hirobe, Y. Yamaguchi, M. Fukunari, Y. Tatematsu, K. Ohkubo, S. Kubo, T. Shimozuma, K. Tanaka and M. Nishiura, 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9-14 Sept. (2018), pp. 1-2. https://doi.org/10.1109/IRMMW-THz.2018.8510350.

  9. T.M. Antonsen, S.Y. Cai, and G.S. Nusinovich, Phys. Fluids B4 (12), 4131- 4139 (1992).

    Article  Google Scholar 

  10. O. Dumbrajs, M.Y. Glyavin, V.E. Zapevalov, and N.A. Zavolsky, IEEE Trans. Plasma Sci. 28 (3), 588 (2000).

    Article  Google Scholar 

  11. A. Grudiev and K. Schünemann, Int. J. Infrared Milli. Waves 24 (4), 429 (2003).

    Article  Google Scholar 

  12. M.I. Airila and P. Kåll, IEEE Trans. Microwave Theor. Tech. 52 (2), 522 (2004).

    Article  Google Scholar 

  13. N.S. Ginzburg, M.Yu. Glyavin, N.A. Zavol’ski, V.E. Zapevalov, M.A. Moiseev, and Yu.V. Novozhilova, Tech. Phys. Lett. 24 (6), 436 (1998).

    Article  Google Scholar 

  14. R.M. Rozental, N.S. Ginzburg, N.I. Zaitsev, E.V. Ilyakov, and I.S. Kulagin, Tech. Phys. 51 (1), 78 (2006).

    Article  Google Scholar 

  15. R.M. Rozental, N.I. Zaitsev, I.S. Kulagin, E.V. Ilyakov, and N.S. Ginzburg, IEEE Trans. Plasma Sci. 32 (2), 418 (2004).

    Article  Google Scholar 

  16. O. Dumbrajs, G.S. Nusinovich, and B. Piosczyk, Phys. Plasmas 11 (12), 5423 (2004).

    Article  Google Scholar 

  17. O. Dumbrajs, Int. J. Infrared Milli. Waves 31 (8), 892 (2010).

    Google Scholar 

  18. M.M. Chumakova, S.A. Usacheva, M.Y. Glyavin, Y.V. Novozhilova, and N.M. Ryskin, IEEE Trans. Plasma Sci. 42 (8), 2030 (2014).

    Article  Google Scholar 

  19. E.M. Khutoryan, T. Idehara, M.M. Melnikova, N.M. Ryskin, and O. Dumbrajs, J. Infrared, Millim., Terahertz Waves 38 (7), 824 (2017).

    Article  Google Scholar 

  20. A.A. Bogdashov, M.Yu. Glyavin, R.M. Rozental’, A.P. Fokin, and V.P. Tarakanov, Tech. Phys. Lett. 44 (3), 221 (2018).

    Article  Google Scholar 

  21. M.M. Melnikova, A.V. Tyshkun, A.G. Rozhnev, and N.M. Ryskin, 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9-14 Sept. (2018), pp. 1-2. https://doi.org/10.1109/IRMMW-THz.2018.8510318.

  22. G.S. Nusinovich, Introduction to the Physics of Gyrotrons. Baltimore: The Johns Hopkins Univ. Press, 2004.

    Google Scholar 

  23. S.N. Vlasov, G.M. Zhislin, I.M. Orlova, M.I. Petelin, and G.G. Rogacheva, Radiophys. Quantum Electron. 12 (8), 972 (1969).

    Article  Google Scholar 

  24. G.S. Nusinovich, IEEE Trans. Plasma Sci. 27 (2), 313 (1999).

    Article  Google Scholar 

  25. M.A. Moiseev and G.S. Nusinovich, Radiophys. Quantum Electron. 17 (11), 1305 (1974).

    Article  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Number 25247094 and 17H03509 and was performed with the support and under the auspices of the International Collaboration Program of Research Center for Development of Far-Infrared Region, University of Fukui.

MMM and NMR acknowledge the financial support from Russian Foundation for Basic Research grant # 18-02-00839 and from the Ministry of Science and Higher Education of Russia within the framework of state task.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita M. Ryskin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, T., Melnikova, M.M., Ryskin, N.M. et al. Effect of Reflection on Mode Competition and Multi-Frequency Oscillation in a High-Power Sub-THz Gyrotron: Experimental Observation and Theoretical Analysis. J Infrared Milli Terahz Waves 41, 697–710 (2020). https://doi.org/10.1007/s10762-020-00695-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00695-1

Keywords

Navigation