Skip to main content
Log in

Ultrabroadband and Low-Dispersion Multiple-Joint Transmission-Line for Terahertz Region

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A multiple-joint transmission line based on the principle of the periscope was developed to realize the flexible guidance of terahertz (THz) waves. The transmission line has a slightly larger diameter than the standard plastic hollow-pipe waveguide, sufficient stability, low transmission loss, ultrabroadband spectrum, and low dispersion. The transmission line is evaluated using a THz time-domain spectrometer consisting of reflective two-dimensional electro-optic sampling with a high-speed complementary metal-oxide semiconductor camera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Vincetti and V. Setti, Optical Fiber Technology 19, 31 (2013).

    Google Scholar 

  2. J. Yang, B. Yang, Z. Wang, and W. Liu, Optics Communications 343, 150 (2015).

    Google Scholar 

  3. G. K. M. Hasanuzzaman, Md. S. Habib, S. M. A. Razzak, Md. A. Hossain, and Y. Namihira, Journal of Lightwave Technology 33, 4027 (2015).

  4. J. Fan, Y. Li, M. Hu, L. Chai, and C. Wang, IEEE Photonics Technology Letters 28, 1096 (2016).

    Google Scholar 

  5. A. Barh, R. K. Varshney, B. P. Pal, G. P. Agrawal, and B. M. A. Rahman, IEEE Photonics Technology Letters 28, 1703 (2016).

    Google Scholar 

  6. B. Hong, M. Swithenbank, N. Somjit, J. Cunningham, and I. Robertson, Journal of Physics D Applied Physics 50, 045104 (2017).

    Google Scholar 

  7. Md. S. Islam, M. Faisal, and S. M. A. Razzak, IEEE Journal of Quantum Electronics 53, 8500608 (2017).

    Google Scholar 

  8. S. Rana, A. S. Rakin, Md. R. Hasan, Md. S. Reza, R. Leonhardt, D. Abbott, and H. Subbaraman, Optics Communications 410, 452 (2018).

    Google Scholar 

  9. Y.-F. Zhu, M.-Y. Chen, and H. Wang, IEEE Transactions on Terahertz Science and Technology 5, 751 (2015).

    Google Scholar 

  10. J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, Optics Express 19, 18470 (2011),

    Google Scholar 

  11. J. Anthony, R. Leonhardt, and A. Argyros, Optics Express 21 2903 (2013),

    Google Scholar 

  12. N. Yudasari, J. Anthony, and R. Leonhardt, Optics Express 22, 26042 (2014).

    Google Scholar 

  13. J. Yang, J. Zhao, C. Gong, H. Tian, L. Sun, P. Chen, L. Lin, and W. Liu, Optics Express 24, 22454 (2016),

    Google Scholar 

  14. T. Ma, H. Guerboukha, and M. Skorobogatiy, Advanced Optical Materials 4, 2085 (2016).

    Google Scholar 

  15. Md. R. Hasan and S. Akter, Electronics Letters 53, 741 (2017).

  16. G.K.M. Hasanuzzaman, S. Iezekiel, C. Markos, and M. S. Habib, Optics Communications 426, 477 (2018).

  17. B. Hong, M. Swithenbank, N. Greenall, R. Clarke, N. Chudpooti, P. Akkaraekthalin, N. Somjit, J. Cunningham, and I. Robertson, IEEE Transactions on Terahertz Science and Technology 8, 90 (2018).

    Google Scholar 

  18. S. Li, Z. Dai, Z. Wang, P. Qi, Q. Su, X. Gao, C. Gong, and W. Liu, Optik 176, 611 (2019).

    Google Scholar 

  19. K. I. Zaytsev, G. M. Katyba, V. N. Kurlov, I. A. Shikunova, V. E. Karasik, and S. O. Yurchenko, IEEE Transactions on Terahertz Science and Technology 6, 576 (2016).

    Google Scholar 

  20. R. W. McGowan, G. Gallot, and D. Grischkowsky, Optics Letter 24, 1431 (1999).

    Google Scholar 

  21. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, Optics Express 12, 5263 (2004).

    Google Scholar 

  22. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, Journal of Optical Society of America B 24, 1230 (2007).

    Google Scholar 

  23. V. Setti, L. Vincetti, and A. Argyros, Optics Express 21, 3388 (2013).

    Google Scholar 

  24. W. Lu and A. Argyros, Journal of Lightwave Technology 32, 4019 (2014).

    Google Scholar 

  25. H. Bao, K. Nielsen, O. Bang, and P. U. Jepsen, Scientific Reports 5, 7620 (2015).

    Google Scholar 

  26. H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, and B. T. Kuhlmey, Optica 3, 941 (2016).

    Google Scholar 

  27. H. Han, H. Park, M. Cho, and J. Kim, Applied Physics Letter 80, 2634 (2002).

    Google Scholar 

  28. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, Japan Journal of Applied Physics 43, L317 (2004).

    Google Scholar 

  29. M. Skorobogatiy, and A. Dupuis, Applied Physics Letter 90, 113514 (2007).

    Google Scholar 

  30. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, Optics Express 17, 8592 (2009).

    Google Scholar 

  31. H. Bao, K. Nielsen, H. K. Rasmussen, P. U. Jepsen, and O. Bang, Optics Express 20, 29507 (2012).

    Google Scholar 

  32. W. Lu, S. Lou, and A. Argyros, IEEE Journal of Selected Topics in Quantum Electronics 22, 4401607 (2016).

    Google Scholar 

  33. R. Mendis, and D. Grischkowsky, Journal of Applied Physics 88, 4449 (2000).

    Google Scholar 

  34. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, Applied Physics Letter 76, 1987 (2000).

    Google Scholar 

  35. L. Chen, H. Chen, T. Kao, J. Lu, and C. Sun, Optics Letter 31, 308 (2006).

    Google Scholar 

  36. M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltran-Mejia, J. C. Balzer, and M. Koch, Optics Express 24, 28968 (2016).

    Google Scholar 

  37. J. Ma, M. Weidenbach, R. Guo, M. Koch, D. M. Mittleman, Journal of Infrared Millimeter and Terahertz Waves 38, 1316 (2017).

    Google Scholar 

  38. D. Jahn, M. Weidenbach, J. Lehr, L. Becker, F. Beltran-Mejia, S. Busch, J. Balzer, M. Koch, Journal of Infrared Millimeter and Terahertz Waves 38, 708 (2017).

    Google Scholar 

  39. R. Guo, E.-M. Stuebling, F. Beltran-Mejia, D. Ulm, T. Kleine-Ostmann, F. Ehrig, and M. Koch, Journal of Infrared, Millimeter, and Terahertz Waves 40, 1 (2019).

  40. X. Liu, K. Kolpatzeck, B. Friederich, D. Damyanov, L. Haring, T. Schultze, J. C. Balzer, and A. Czylwik, 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), (2019), DOI: https://doi.org/10.1109/IRMMW-THz.2019.8873855.

  41. M. Wachter, M. Nagel, and H. Kurz, Optics Express 13, 10815 (2005).

    Google Scholar 

  42. K. Wang, and D. M. Mittleman, Nature 432, 376 (2004).

    Google Scholar 

  43. M. Mbonye, R. Mendis, and D. M. Mittleman, Applied Physics Letter 95, 233506 (2009).

    Google Scholar 

  44. Z. Jiang, X. G. Xu, and X.-C. Zhang, Applied Optics 39, 2982 (2000).

    Google Scholar 

  45. F. Miyamaru, T. Yonera, M. Tani, and M. Hangyo, Japan Journal of Applied Physics 43, L489 (2004).

    Google Scholar 

  46. H. Kitahara, M. Tani, and M. Hangyo, Applied Physics Letter 94, 091119 (2009).

    Google Scholar 

  47. H. Kitahara, M. Tani, and M. Hangyo, Japan. Journal of Applied Physics 49, 020207 (2010).

    Google Scholar 

  48. H. Kitahara, M. Tani, M. Hangyo, Journal of Optoelectronics and Advanced Materials 20, 581 (2018).

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Terahertz Optics Project for Medical Application led by Prof. J. Nishizawa, organized by the Ministry of Education, Culture, Sports, Science, and Technology of Japan. The authors greatly thank Mr. Takashi Inoue for his contributions to the preparation of the multiple-joint transmission-line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Kitahara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(MP4 3458 kb)

ESM 2

(AVI 3477 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitahara, H., Hangyo, M. & Tani, M. Ultrabroadband and Low-Dispersion Multiple-Joint Transmission-Line for Terahertz Region. J Infrared Milli Terahz Waves 41, 1218–1226 (2020). https://doi.org/10.1007/s10762-020-00693-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00693-3

Keywords

Navigation