Skip to main content
Log in

Measurement and Analysis of Noise Spectra in Terahertz Wave Detection Utilizing Low-Temperature-Grown GaAs Photoconductive Antenna

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Noise power spectral density (NPSD) in time domain terahertz (THz) wave detection systems utilizing GaAs-based photoconductive antennas (PCAs) was investigated quantitatively. The contributions of the PCA noise and the amplifier noises at the amplifier output depend strongly on the resistance of the PCA, the circuit parameters, and the frequency. The PCA has two types of noise: one can be modeled by the Johnson-Nyquist (thermal) noise for the PCA resistance, while the other has an NPSD inversely proportional to the frequency with its intensity dependent on the properties of the GaAs and the metallization. At a high frequency range ~ 100 kHz, voltage-type amplifier noise could appear if the cable capacitance between the PCA and the amplifier is large. As a result, a low-noise range tends to appear in the intermediate frequency range. In comparison with the PCAs with Ti/Au metallization, the PCAs with Pd/Ge/Ti/Au having lower contact resistance lead to lager influence of the Johnson-Nyquist noise at the output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O. M. Abdulmunem, N. Born, M. Mikulics, J. C. Balzer, M. Koch, and S. Preu, Micro. Opt. Tech. Lett., 59, 468 (2017).

    Article  Google Scholar 

  2. B. Heshmat, H. Pahlevaninezhad, Y. Pang, M. Masnadi-Shirazi, R. B. Lewis, T. Tiedje, R. Gordon, and T. E. Darcie, Nano Lett., 12, 6255 (2012).

    Article  Google Scholar 

  3. C.W. Berry, N. Wang, M.R. Hashemi, M. Unlu, and M. Jarrahi, Nat. Comm., 4, 1622 (2013).

    Article  Google Scholar 

  4. A. Jooshesh, V. Bahrami-Yekta, J. Zhang, T. Tiedje, T. E. Darcie, and R. Gordon, Nano Lett., 15, 8306 (2015).

    Article  Google Scholar 

  5. N. T. Yardimci and M. Jarrahi, Sci. Rep., 7, 42667 (2017).

    Article  Google Scholar 

  6. N. T. Yardimci, D. Turan, S. Cakmakyapan, and M. Jarrahi, Appl. Phys. Lett., 113, 251102 (2018).

    Article  Google Scholar 

  7. T. Siday, P. P. Vabishchevich, L. Hale, C. T. Harris, T. S. Luk, J. L. Reno, I. Brener, and O. Mitrofanov, Nano Lett., 19, 2888 (2019).

    Article  Google Scholar 

  8. L. Duvillaret, F. Garet, and J.-L. Coutaz, J. Opt. Soc. Am. B, 17, 452 (2000).

    Article  Google Scholar 

  9. M. Takeda, S. R. Tripathi, M. Aoki, and N. Hiromoto, Adv. Mat. Res., 222, 213 (2011).

    Google Scholar 

  10. N. Wang and M. Jarrahi, J. Infrared Milli. Terahz. Waves, 34, 519 (2013).

    Article  Google Scholar 

  11. M. van Exter and D. R. Grischkowsky, IEEE Trans. Microwave Theory and Tech., 38, 1684 (1990).

    Article  Google Scholar 

  12. T. Kataoka, K. Kajikawa, J. Kitagawa, Y. Kadoya, and Y. Takemura, Appl. Phys. Lett., 97, 201110 (2010).

    Article  Google Scholar 

  13. R. J. B. Dietz, B. Globisch, H. Roehle, D. Stanze, T. Göbel, and M. Schell, Opt. Express, 22, 19411 (2014).

    Article  Google Scholar 

  14. B. Globisch, R. J. B. Dietz, S. Nellen, T. Gobel, and M. Schell, AIP ADVANCES, 6, 125011 (2016).

    Article  Google Scholar 

  15. R. B. Kohlhaas, S. Breuer, S. Nellen, L. Liebermeister, M. Schell, M. P. Semtsiv, W. T. Masselink, and B. Globisch, Appl. Phys. Lett., 114, 221103 (2019).

    Article  Google Scholar 

  16. I. S. Gregory, C. M. Tey, A. G. Cullis, M. J. Evans, H. E. Beere and I. Farrer, Phys. Rev. B, 73, 195201 (2006).

    Article  Google Scholar 

  17. M. P. Patkar, T. P. Chin, J. M. Woodall, M. S. Lundstrom, and M. R. Melloch, Appl. Phys. Lett., 66, 1412 (1995).

    Article  Google Scholar 

  18. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H.-W. Hübers, and M. Koch, Opt. Express, 16, 19695 (2008).

    Article  Google Scholar 

  19. J. S. Kwak, H. N. Kim, and H. K. Baik, J.-L. Lee, H. Kim, and H. M. Park, S. K. Noh, Appl. Phys. Lett., 67, 2465 (1995).

    Article  Google Scholar 

  20. M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grützmacher, R. Sobolewski, and P. Kordoš, IEEE Photon. Tech. Lett., 20, 1054 (2008).

    Article  Google Scholar 

  21. M. Yamanishi, T. Hirohata, S. Hayashi, K. Fujita, and K. Tanaka, J. Appl. Phys., 116, 183106 (2014).

    Article  Google Scholar 

  22. A. Suda and N. Otsuka, Surf. Sci., 458, 162 (2000).

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Dr. Yoriko Tominaga for the support in molecular beam epitaxy growth.

Funding

This work was supported by JSPS KAKENHI Grant Number JP18K04980.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Kadoya.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitta, M., Nakamura, R. & Kadoya, Y. Measurement and Analysis of Noise Spectra in Terahertz Wave Detection Utilizing Low-Temperature-Grown GaAs Photoconductive Antenna. J Infrared Milli Terahz Waves 40, 1150–1159 (2019). https://doi.org/10.1007/s10762-019-00633-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00633-w

Keywords

Navigation