Skip to main content
Log in

An Experimental Investigation of a 0.8 THz Double-Beam Gyrotron

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, we present and discuss the new experimental results that characterize the output parameters, and the overall performance of the recently developed 0.8 THz double-beam gyrotron operating at the second harmonic of the cyclotron frequency on the TE8,5 mode. Alongside with this design mode, several other resonances excited at both the fundamental and second harmonic operations in a wide frequency range have been studied. These experiments demonstrate that the usage of a double-beam electron-optical system opens more possibilities for realization of such regimes of operation that otherwise are not accessible in a conventional (single-beam) gyrotron due to a severe competition between the neighboring modes and the narrowness of the zones of a stable single mode operation. Most notably, the results prove that second harmonic operation at higher beam currents and respectively at higher levels of the output power are possible as expected from the preceding theoretical considerations and numerical studies. The results of this study are helpful for getting a better insight in the physics of the operation of the double-beam gyrotrons and suggest some possibilities for further optimization of both the design of the tube and the experimental setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.S. Dhillon, et al. The 2017 terahertz science and technology roadmap, Journal of Physics D: Applied Physics, vol. 50, no. 4, pp. 043001, 2017. https://doi.org/10.1088/1361-6463/50/4/043001.

    Article  Google Scholar 

  2. M. Thumm, State-of-the-art of high power gyro-devices and free electron masers. Update 2017, KIT Scientific Reports, vol. 7750, pp. 1–183, 2018 :https://doi.org/10.5445/KSP/1000081551.

    Article  Google Scholar 

  3. G.S. Nusinovich, Mode interaction in gyrotrons, International Journal of Electronics, vol. 51, no. 4, pp. 457–474, 1981 :https://doi.org/10.1080/00207218108901349.

    Article  Google Scholar 

  4. O. Dumbrajs, G.S. Nusinovich, Cold-cavity and self-consistent approaches in the theory of mode competition in gyrotrons, IEEE Transactions on Plasma Science, vol. 20, no. 3, pp.133–138, 1992 :https://doi.org/10.1109/27.142812.

    Article  Google Scholar 

  5. E. Borie, B. Jödicke, Self-consistent theory of mode competition for gyrotrons, International Journal of Electronics, vol. 72, no. 5–6, pp. 721–744, 1992 :https://doi.org/10.1080/00207219208925611.

    Article  Google Scholar 

  6. G.F. Brand, T. Idehara, T. Tatsukawa, I. Ogawa, Mode competition in a high harmonic gyrotron, International Journal of Electronics, vol. 72, no. 5–6, pp. 745–758, 1992 :https://doi.org/10.1080/00207219208925612.

    Article  Google Scholar 

  7. M.Y. Glyavin, V.E. Zapevalov, A.N. Kuftin, Mode competition in nonstationary regimes of high-power gyrotrons, Radiophysics and Quantum Electronics, vol. 41, no. 6, pp. 542–548, 1998 :https://doi.org/10.1007/BF02676688.

    Article  Google Scholar 

  8. T. Idehara, I. Ogawa, Y., Shimizu, T. Tatsukawa, Higher harmonic operations of submillimeter wave gyrotrons (gyrotron FU series), International Journal of Infrared and Millimeter Waves, vol. 19, no. 6, pp. 803–816, 1998 : https://doi.org/10.1023/A:1022668205783.

    Article  Google Scholar 

  9. M.K. Hornstein, V.S. Bajaj, R.G. Griffin, R.J. Temkin, Continuous-wave operation of a 460-GHz second harmonic gyrotron oscillator, IEEE Transactions on Plasma Science, vol. 34, no. 3, pp. 524–533, 2006 :https://doi.org/10.1109/TPS.2006.875769.

    Article  Google Scholar 

  10. M.V. Kartikeyan, E. Borie, M. Thumm, A 250 GHz, 50 W, CW second harmonic gyrotron, International Journal of Infrared and Millimeter Waves, vol. 28, no. 8, pp. 611–619, 2007 :https://doi.org/10.1007/s10762-007-9242-8.

    Article  Google Scholar 

  11. M.V. Morozkin, M.Y. Glyavin, G.G. Denisov, A.G. Luchinin, A high-efficiency second-harmonic gyrotron with a depressed collector, International Journal of Infrared and Millimeter Waves, vol. 29, no. 11, pp. 1004–1010, 2008 DOI:https://doi.org/10.1007/s10762-008-9408-z.

    Article  Google Scholar 

  12. T. Saito, et al. Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation, Physics of Plasmas, vol. 19, no. 6, pp. 063106, 2012 :https://doi.org/10.1063/1.4729316.

    Article  Google Scholar 

  13. Y. Tatematsu, et al. Development of second harmonic gyrotrons, Gyrotron FU CW GII and Gyrotron FU CW GIII, equipped with internal mode converters, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, no. pp. 169–178, 2014 :https://doi.org/10.1007/s10762-014-0048-1.

    Article  Google Scholar 

  14. V.E. Zapevalov, Sh.E. Tsimring, Multibeam gyrotrons, Radiophysics and Quantum Electronics, vol. 33, no. 11, pp. 594–960, 1990 :https://doi.org/10.1007/BF01039240.

    Article  Google Scholar 

  15. V.E. Zapevalov, V.N. Manuilov, Sh.E. Tsimring, Double-beam gyrotron electron-optical systems, Radiophysics and Quantum Electronics, vol. 34, no. 2, pp. 174–179, 1991 :https://doi.org/10.1007/BF01045526.

    Article  Google Scholar 

  16. V.E. Zapevalov, V.N. Manuilov, O.V. Malygin, S.E. Tsimring, High-power twin-beam gyrotrons operating at the second gyrofrequency harmonic, Radiophysics and Quantum Electronics, vol. 37, no. 3, pp. 237–240, 1994 :https://doi.org/10.1007/BF01054034.

    Article  Google Scholar 

  17. S. Liu, X. Yuan, D. Liu, Y. Yan, Y. Zhang, H. Li, R. Zhong, The coaxial gyrotron with two electron beams. I. Linear theory and nonlinear theory, Phys. Plasmas, vol. 14, no. 10, 103113, 2007 :https://doi.org/10.1063/1.2784766.

    Article  Google Scholar 

  18. S. Hou, S. Yu, H. Li, Numerical research on a 4 MW 170 GHz coaxial gyrotron with a double electron beam, Physics of Plasmas, vol. 26, no. 1, 013110, 2019 : https://doi.org/10.1063/1.5053637.

    Article  Google Scholar 

  19. U. Singh, A. Kumar, N. Kumar, N. Kumar, B. Pratap, L.P. P., A. K. Sinha, Electron beam emission and interaction of double-beam gyrotron, Fusion Engineering and Design, vol. 87, pp. 1583–1588, 2012. DOI:https://doi.org/10.1016/j.fusengdes.2012.04.024.

    Article  Google Scholar 

  20. V. Manuilovl, V. Zaslavsky, I. Zotova, I. Osharin, A. Savilov, A. Fokin, T. Idehara, M. Glyavin, Possibilities of mode selection in double-beam gyrotrons with additional absorbing beam, 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, 2018, pp. 1–2 :https://doi.org/10.1109/IRMMW-THz.2018.8509976.

  21. N.S. Ginzburg, M.Yu. Glyavin, A.M. Malkin, V. Manuilov, R. Rozental, A. Sedov, A. Sergeev, V. Zaslavsky, I. Zotova, T. Idehara, Improvement of stability of high cyclotron harmonic operation in the double-beam THz gyrotrons, IEEE Transactions on Plasma Science, vol. 44, no. 8, pp. 1303–1309, 2016 :https://doi.org/10.1109/TPS.2016.2585307.

    Article  Google Scholar 

  22. V.N. Manuilov, M.Yu. Glyavin, A.S. Sedov, V. Yu Zaslavsky, T. Idehara, Design of a second harmonic double-beam continuous wave gyrotron with operating frequency of 0.79 THz, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 36, no. 12, pp. 1164–1175, 2015 : https://doi.org/10.1007/s10762-015-0209-x.

    Article  Google Scholar 

  23. M. Y. Glyavin, V.N. Manuilov, E.M. Khutorian, A.M. Malkin, M.V. Morozkin, R.M. Rozental, A.S. Sedov, A.I. Tsvetkov, V.Y. Zaslavsky, N.S. Ginzburg, T. Idehara, Development and preliminary tests of a second harmonic double-beam continuous wave gyrotron with operating frequency of 0.79 THz, 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, 2016, pp. 1–2. :https://doi.org/10.1109/IRMMW-THz.2016.7758385.

  24. T. Idehara, M. Glyavin, A. Kuleshov, S. Sabchevski, V. Manuilov, V. Zaslavsky, I. Zotova, A. Sedov, Experimental study of a THz band double-beam gyrotron, 42 International Conference on Infrared, Millimeter and Terahertz Waves (27 Aug – 1 Sept 2017, Cancún, México), pp. 2 :https://doi.org/10.1109/IRMMW-THz.2017.8067005.

  25. T. Idehara, M. Glyavin, A. Kuleshov, S. Sabchevski, V. Manuilov, V. Zaslavsky, I. Zotova, A. Sedov, A novel THz-band double-beam gyrotron for high-field DNP-NMR spectroscopy, Review of Scientific Instruments, vol. 88, n. 9, 094708, 2017 : https://doi.org/10.1063/1.4997994.

    Article  Google Scholar 

  26. Glyavin M., Ogawa I., Zotova I., Ginzburg N., Fokin A., Sergeev A., Rozental R., Tarakanov V., Bogdashov A., Krapivnitskaia T., Manuilov V., Idehara T., Frequency stabilization in a sub-terahertz gyrotron with delayed reflections of output radiation, IEEE Transactions on Plasma Science, vol. 46, n. 7, pp. 2465–2469, 2018 : https://doi.org/10.1109/TPS.2018.2797480.

    Article  Google Scholar 

  27. V. Manuilov, V. Zaslavsky, I. Zotova, T. Idehara, M. Glyavin, Two-stage energy recovery system for thz band double-beam gyrotron, 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, 2018, pp. 1–1. : https://doi.org/10.1109/IRMMW-THz.2018.8510098.

  28. I.V. Bandurkin, M.Yu. Glyavin, T. Idehara, A.V. Savilov, Double-beam gyrotron with frequency multiplication, IEEE Transactions on Electron Devices, vol. 6, no. 5, pp. 2396–2400, 2019 :https://doi.org/10.1109/TED.2019.2905047.

    Article  Google Scholar 

  29. D.D. Arumugam, D.W. Engels, Characterization of RF propagation in metal pipes for passive RFID systems, Int. J. Radio Frequency Identification Technology and Applications, vol. 1, n. 3 (2007) 303–343. : https://doi.org/10.1504/IJRFITA.2007.015853.

    Article  Google Scholar 

Download references

Funding

The modeling of the operation scenario and the computer-aided design of the electron-optical system was supported by RSF project 19-12-00141. The manufacturing of the tube and the experimental work at FIR UF were supported partially by the Special Fund for Education and Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan, and SENTAN Project of the Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svilen Sabchevski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsudo, S., Glyavin, M., Khutoryan, E. et al. An Experimental Investigation of a 0.8 THz Double-Beam Gyrotron. J Infrared Milli Terahz Waves 40, 1114–1128 (2019). https://doi.org/10.1007/s10762-019-00629-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00629-6

Keywords

Navigation