The Temperature Behavior of Microwave Absorption of Metal Oxide Powders When Heated by a 263-GHz Gyrotron Radiation

  • Alexander I. TsvetkovEmail author
  • Alexender V. Vodopyanov
  • Dmitry A. Mansfeld
  • Andrey P. Fokin


In this paper, the temperature dependence of microwave absorption in powders of various metal oxides was studied. The powders of aluminum oxide Al2O3, zinc oxide ZnO, tungsten trioxide WO3, and titanium dioxide TiO2 were the test substances. A subterahertz gyrotron setup with a frequency of 263 GHz and an adjustable output power level from watts to 1 kW was used as a radiation source. In the experiments, the samples of the powders were heated by the radiation of the gyrotron, and at the same time, the temperature of the sample was recorded and the power absorbed in the sample was measured by the calorimetric method. The measurements were carried out in a wide range of temperatures: from several tens up to 1200 °C. The results obtained may be of both fundamental and applied interest for researchers engaged in microwave heating of materials.


Metal oxide powder Absorption Gyrotron 



The authors are grateful to Prof. Samokhin for the materials provided.

Funding Information

This work was supported by the Russian Science Foundation, project № 18-79-10194.


  1. 1.
    A.V. Vodopyanov, A.V. Samokhin, N.V. Alexeev, M.A. Sinayskiy, A.I. Tsvetkov, M.Yu. Glyavin, A.P. Fokin, V. I. Malygin, Vacuum (2017),
  2. 2.
    A. Lorke, M. Winterer, R. Schmechel, C. Schulz, Nanoparticles From the Gasphase. Formation, Structure, Properties. Berlin, Heidelberg: Springer Science & Business Media (2012), Scholar
  3. 3.
    R. Vajtai, Springer Handbook of Nanomaterials. Berlin, Heidelberg: Springer Science & Business Media (2013), Scholar
  4. 4.
    Z. Guo, L. Tan, Fundamentals and Applications of Nanomaterials. Norwood, MA: Artech House, 2009. 249 pp.Google Scholar
  5. 5.
    M.T. Swihart, Curr. Opin. Colloid Interface Sci. (2003),
  6. 6.
    C. Granqvist, L. Kish, W. Marlow, Gas Phase Nanoparticle Synthesis. Berlin: Springer Science & Business Media, 2004. 186 pp. CrossRefGoogle Scholar
  7. 7.
    A.V. Samokhin, N.V. Alexeev, A.V. Vodopyanov, D.A. Mansfeld, Y.V. Tsvetkov, Journal of Nanotechnology in Engineering and Medicine (2015),
  8. 8.
    A.V. Vodopyanov, D.A. Mansfeld, A.V. Samokhin, N.V. Alexeev, Yu.V. Tsvetkov, Radiophys Quantum El, (2017),
  9. 9.
    M.Yu. Glyavin, A.V. Chirkov, G.G. Denisov, A.P. Fokin, V.V. Kholoptsev, A.N. Kuftin, A.G. Luchinin, G.Yu. Golubyatnikov, V.I. Malygin, M.V. Morozkin,V.N. Manuilov, M.D. Proyavin, A.S. Sedov, E.V. Sokolov, E.M. Tai, A.I. Tsvetkov, V.E. Zapevalov, Rev. Sci. Inst. (2015),
  10. 10.
    M.Yu. Glyavin, M.V. Morozkin, A.I. Tsvetkov, L.V. Lubyako, G.Yu. Golubiatnikov, A.N. Kuftin, V.E. Zapevalov, V.V. Kholoptsev, A.G. Eremeev, A.S. Sedov, V.I. Malygin, A.V. Chirkov, A.P. Fokin, E.V. Sokolov, G.G. Denisov, Radiophys. Quantum Electron, (2016),
  11. 11.
    V.V. Parshin, E.A. Serov, 20th International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings (2010),

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Volga State University of Water TransportNizhny NovgorodRussia
  3. 3.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations