Advertisement

High-Resolution THz Spectroscopy and Solid-State Density Functional Theory Calculations of Polycyclic Aromatic Hydrocarbons

  • Feng Zhang
  • Houng-Wei Wang
  • Keisuke TominagaEmail author
  • Michitoshi HayashiEmail author
  • Tetsuo Sasaki
Article
  • 54 Downloads

Abstract

High-resolution and broadband THz spectra of the crystals of nine polycyclic aromatic hydrocarbons (PAHs) are presented. Five PAHs are comprised of ortho-fused benzene rings and the other four of peri-fused benzene rings. THz mode assignment is performed by using the anthracene and pyrene crystals as examples. The performance of the PBE functional augmented by Grimme’s two dispersion correction terms, D* and D3, respectively, are rigorously evaluated against the experimental criteria of frequency and isotope shift (IS). The D* and D3 terms use empirical and semi-classical approach for correcting the London-type dispersion interactions, respectively. The nature of each THz mode simulated by PBE-D* and that by PBE-D3 is quantitatively compared in terms of the percentage contributions of the intermolecular and the intramolecular vibrations to the vibrational energy. We find that the two methods have equivalent performance in reproducing the frequencies, ISs, and nature of THz modes of both the anthracene and pyrene crystals.

Keywords

Terahertz spectroscopy Phonon mode Solid-state density functional theory London dispersion force Isotope shift 

Notes

Acknowledgments

All the authors thank Dr. Kaoru Ohta for his illuminating discussions. A part of this research is based on the Cooperative Research Project of Research Center for Biomedical Engineering. The theoretical computations were performed using the Research Center for Computational Science, Okazaki, Japan.

Funding Information

F.Z. received support from the JSPS Grant-In-Aid project (18K05034). M.H. received financial support from the Ministry of Science and Technology (MOST) of Taiwan under MOST 107-2113-M-002-012.

Supplementary material

10762_2019_621_MOESM1_ESM.docx (92 kb)
ESM 1 (DOCX 92 kb)

References

  1. 1.
    B. M. Fischer, H. Helm, and P. U. Jepsen, Chemical recognition with broadband THz spectroscopy,. Proc. IEEE, 95, no. 8, pp. 1592–1604, 2007,  https://doi.org/10.1109/jproc.2007.898904.CrossRefGoogle Scholar
  2. 2.
    I. Hosako et al., At the dawn of a new era in terahertz technology,. Proc. IEEE, vol. 95, no. 8, pp. 1611–1623, 2007,  https://doi.org/10.1109/jproc.2007.898844. CrossRefGoogle Scholar
  3. 3.
    J. H. Son, Terahertz electromagnetic interactions with biological matter and their applications,. J. Appl. Phys., vol. 105, no. 10, 2009, Art no. 102033,  https://doi.org/10.1063/1.3116140.
  4. 4.
    P. U. Jepsen, D. G. Cooke, and M. Koch, Terahertz spectroscopy and imaging - Modern techniques and applications,. Laser & Photonics Reviews, vol. 5, no. 1, pp. 124–166, 2011,  https://doi.org/10.1002/lpor.201000011.CrossRefGoogle Scholar
  5. 5.
    T. Nagatsuma, Terahertz technologies: present and future,. Ieice Electronics Express, vol. 8, no. 14, pp. 1127–1142, 2011,  https://doi.org/10.1587/elex.8.1127.CrossRefGoogle Scholar
  6. 6.
    Y. C. Shen, Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review,. Int. J. Pharm., vol. 417, no. 1–2, pp. 48–60, 2011,  https://doi.org/10.1016/j.ijpharm.2011.01.012.CrossRefGoogle Scholar
  7. 7.
    R. M. Smith and M. A. Arnold, Terahertz Time-Domain Spectroscopy of Solid Samples: Principles, Applications, and Challenges,. Applied Spectroscopy Reviews, vol. 46, no. 8, pp. 636–679, 2011,  https://doi.org/10.1080/05704928.2011.614305.CrossRefGoogle Scholar
  8. 8.
    A. I. McIntosh, B. Yang, S. M. Goldup, M. Watkinson, and R. S. Donnan, Terahertz spectroscopy: a powerful new tool for the chemical sciences?,. Chem. Soc. Rev., vol. 41, no. 6, pp. 2072–2082, 2012,  https://doi.org/10.1039/c1cs15277g.CrossRefGoogle Scholar
  9. 9.
    A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, Review of Terahertz Technology Readiness Assessment and Applications,. J Infrared Millim. Terahertz Waves, vol. 34, no. 9, pp. 500–518, Sep 2013,  https://doi.org/10.1007/s10762-013-9998-y.CrossRefGoogle Scholar
  10. 10.
    Y. Li, L. Xu, Q. Zhou, G. Xiong, Y. Shen, and X. Deng, A comparative evaluation of the activities of thiol group and hydroxyl group in low-frequency vibrations using terahertz spectroscopy and DFT calculations,. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 214, pp. 246–251 2019 2019/05/05/,  https://doi.org/10.1016/j.saa.2019.02.018.CrossRefGoogle Scholar
  11. 11.
    C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and S. W. Martin, Relaxation in glassforming liquids and amorphous solids,. J. Appl. Phys., vol. 88, no. 6, pp. 3113–3157, 2000,  https://doi.org/10.1063/1.1286035.CrossRefGoogle Scholar
  12. 12.
    U. Møller, D. G. Cooke, K. Tanaka, and P. U. Jepsen, Terahertz reflection spectroscopy of Debye relaxation in polar liquids, J. Opt. Soc. Am. B, vol. 26, no. 9, pp. A113-A125, 2009,  https://doi.org/10.1364/JOSAB.26.00A113.CrossRefGoogle Scholar
  13. 13.
    J. T. Kindt and C. A. Schmuttenmaer, Far-Infrared Dielectric Properties of Polar Liquids Probed by Femtosecond Terahertz Pulse Spectroscopy,. The Journal of Physical Chemistry, vol. 100, no. 24, pp. 10373–10379, 1996,  https://doi.org/10.1021/jp960141g.CrossRefGoogle Scholar
  14. 14.
    N. Yamamoto, K. Ohta, A. Tamura, and K. Tominaga, Broadband Dielectric Spectroscopy on Lysozyme in the Sub-Gigahertz to Terahertz Frequency Regions: Effects of Hydration and Thermal Excitation,. J. Phys. Chem. B, vol. 120, no. 21, pp. 4743–4755, 2016,  https://doi.org/10.1021/acs.jpcb.6b01491.CrossRefGoogle Scholar
  15. 15.
    N. Yamamoto et al., Effect of Temperature and Hydration Level on Purple Membrane Dynamics Studied Using Broadband Dielectric Spectroscopy from Sub-GHz to THz Regions, J. Phys. Chem. B, vol. 122, no. 4, pp. 1367–1377, Feb 2018,  https://doi.org/10.1021/acs.jpcb.7b10077.CrossRefGoogle Scholar
  16. 16.
    L. Berthier and G. Biroli, Theoretical perspective on the glass transition and amorphous materials,. Rev. Mod. Phys., vol. 83, no. 2, pp. 587–645, 2011.  https://doi.org/10.1103/RevModPhys.83.587.CrossRefGoogle Scholar
  17. 17.
    U. Buchenau, C. Schönfeld, D. Richter, T. Kanaya, K. Kaji, and R. Wehrmann, Neutron Scattering Study of the Vibration-Relaxation Crossover in Amorphous Polycarbonates,. Phys. Rev. Lett., vol. 73, no. 17, pp. 2344–2347, 1994,  https://doi.org/10.1103/PhysRevLett.73.2344.CrossRefGoogle Scholar
  18. 18.
    S. Kastner, M. Köhler, Y. Goncharov, P. Lunkenheimer, and A. Loidl, High-frequency dynamics of type B glass formers investigated by broadband dielectric spectroscopy,. J. Non-Cryst. Solids, vol. 357, no. 2, pp. 510–514, 2011,  https://doi.org/10.1016/j.jnoncrysol.2010.06.074.CrossRefGoogle Scholar
  19. 19.
    F. Zhang, H.-W. Wang, K. Tominaga, and M. Hayashi, Mixing of intermolecular and intramolecular vibrations in optical phonon modes: terahertz spectroscopy and solid-state density functional theory,. Wiley Interdisciplinary Reviews: Computational Molecular Science, vol. 6, no. 4, pp. 386–409, 2016,  https://doi.org/10.1002/wcms.1256.Google Scholar
  20. 20.
    F. Zhang, H.-W. Wang, K. Tominaga, M. Hayashi, T. Hasunuma, and A. Kondo, Application of THz Vibrational Spectroscopy to Molecular Characterization and the Theoretical Fundamentals: An Illustration Using Saccharide Molecules,. Chemistry – An Asian Journal, vol. 12, no. 3, pp. 324–331, 2017,  https://doi.org/10.1002/asia.201601419.CrossRefGoogle Scholar
  21. 21.
    Y. Li, A. Lukacs, S. Bordacs, J. Moczar, M. Nyitrai, and J. Hebling, The effect of the flexibility of hydrogen bonding network on low-frequency motions of amino acids. Evidence from Terahertz spectroscopy and DFT calculations,. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, vol. 191, pp. 8–15, 2018,  https://doi.org/10.1016/j.saa.2017.09.035.CrossRefGoogle Scholar
  22. 22.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattice, Clarendon Press, Oxford Classic Texts in the Physical Science, 1998.Google Scholar
  23. 23.
    C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc, Press, Eighth Edition, 2004.Google Scholar
  24. 24.
    A. Togo and I. Tanaka, First principles phonon calculations in materials science,. Scripta Mater, vol. 108, pp. 1–5, 2015,  https://doi.org/10.1016/j.scriptamat.2015.07.021.CrossRefGoogle Scholar
  25. 25.
    J. Chen, L. Hu, J. Deng, and X. Xing, Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications,. Chem. Soc. Rev., vol. 44, no. 11, pp. 3522–3567, 2015,  https://doi.org/10.1039/C4CS00461B.CrossRefGoogle Scholar
  26. 26.
    W. Miller, C. W. Smith, D. S. Mackenzie, and K. E. Evans, Negative thermal expansion: a review,. Journal of Materials Science vol. 44, no. 20, pp. 5441–5451, 2009,  https://doi.org/10.1007/s10853-009-3692-4.CrossRefGoogle Scholar
  27. 27.
    Y. Z. Pei, X. Y. Shi, A. LaLonde, H. Wang, L. D. Chen, and G. J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics,. Nature, vol. 473, no. 7345, pp. 66–69, May 2011,  https://doi.org/10.1038/nature09996.CrossRefGoogle Scholar
  28. 28.
    T. M. Tritt and M. A. Subramanian, Thermoelectric materials, phenomena, and applications: A bird's eye view,. MRS Bull, vol. 31, no. 3, pp. 188–194, 2006,  https://doi.org/10.1557/mrs2006.44.CrossRefGoogle Scholar
  29. 29.
    B. Fultz, Vibrational thermodynamics of materials,. Prog. Mater Sci, vol. 55, no. 4, pp. 247–352, 2010,  https://doi.org/10.1016/j.pmatsci.2009.05.002.CrossRefGoogle Scholar
  30. 30.
    H. X. Ji et al., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage,. Energy & Environmental Science, vol. 7, no. 3, pp. 1185–1192, 2014,  https://doi.org/10.1039/c3ee42573h.CrossRefGoogle Scholar
  31. 31.
    R. Yang, X. Y. Wang, Y. Zhang, H. Y. Mao, P. Lan, and D. G. Zhou, Facile Synthesis of Mesoporous Silica Aerogels from Rice Straw Ash-based Biosilica via Freeze-drying,. Bioresources, vol. 14, no. 1, pp. 87–98, 2019,  https://doi.org/10.15376/biores.14.1.87-98.Google Scholar
  32. 32.
    S. Califano and V. Schettino, Vibrational relaxation in molecular crystals,. Int. Rev. Phys. Chem, vol. 7, no. 1, pp. 19–57, 1988,  https://doi.org/10.1080/01442358809353204.CrossRefGoogle Scholar
  33. 33.
    P. G. Klemens, Anharmonic Decay of Optical Phonons, Phys. Rev, vol. 148, no. 2, pp. 845–848, 1966,  https://doi.org/10.1103/PhysRev.148.845.CrossRefGoogle Scholar
  34. 34.
    M. D. King, W. Ouellette, and T. M. Korter, Noncovalent Interactions in Paired DNA Nucleobases Investigated by Terahertz Spectroscopy and Solid-State Density Functional Theory, (in English). J. Phys. Chem. A, vol. 115, no. 34, pp. 9467–9478, 2011,  https://doi.org/10.1021/Jp111878h.CrossRefGoogle Scholar
  35. 35.
    F. Nishimura, H. Hoshina, Y. Ozaki, and H. Sato, Isothermal crystallization of poly (glycolic acid) studied by terahertz and infrared spectroscopy and SAXS/WAXD simultaneous measurements,. Polym. J, vol. 51, no. 2, pp. 237–245, 2019,  https://doi.org/10.1038/s41428-018-0150-7.CrossRefGoogle Scholar
  36. 36.
    M. T. Ruggiero, J. A. Zeitler, and A. Erba, Intermolecular anharmonicity in molecular crystals: interplay between experimental low-frequency dynamics and quantum quasi-harmonic simulations of solid purine,. Chem. Commun. vol. 53, no. 26, pp. 3781–3784, 2017,  https://doi.org/10.1039/C7CC00509A.CrossRefGoogle Scholar
  37. 37.
    F. Zhang, H.-W. Wang, K. Tominaga, M. Hayashi, S. Lee, and T. Nishino, Elucidation of Chiral Symmetry Breaking in a Racemic Polymer System with Terahertz Vibrational Spectroscopy and Crystal Orbital Density Functional Theory,. The Journal of Physical Chemistry Letters, vol. 7, no. 22, pp. 4671–4676, 2016  https://doi.org/10.1021/acs.jpclett.6b02213.CrossRefGoogle Scholar
  38. 38.
    J. Neu, H. Nikonow, and C. A. Schmuttenmaer, Terahertz Spectroscopy and Density Functional Theory Calculations of dl-Norleucine and dl-Methionine,. J. Phys. Chem. A, vol. 122, no. 28, pp. 5978–5982, 2018  https://doi.org/10.1021/acs.jpca.8b04978.CrossRefGoogle Scholar
  39. 39.
    F. Zhang et al., Terahertz spectroscopy and solid-state density functional theory calculation of anthracene: Effect of dispersion force on the vibrational modes, J. Chem. Phys., vol. 140, no. 17, p. 174509, 2014,  https://doi.org/10.1063/1.4873421.CrossRefGoogle Scholar
  40. 40.
    F. Zhang et al., Analysis of vibrational spectra of solid-state adenine and adenosine in the terahertz region,. RSC Adv. vol. 4, no. 1, pp. 269–278, 2014,  https://doi.org/10.1039/C3RA44285C.CrossRefGoogle Scholar
  41. 41.
    S. D. Costa et al., Resonant Raman spectroscopy on enriched C-13 carbon nanotubes,. Carbon, vol. 49, no. 14, pp. 4719–4723, 2011,  https://doi.org/10.1016/j.carbon.2011.06.076.CrossRefGoogle Scholar
  42. 42.
    T. Sasaki, T. Tanabe, and J. i. Nishizawa, 2016 Frequency accuracy and resolution of a GaP continuous-wave terahertz spectrometer, in 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), pp. 1–2,  https://doi.org/10.1109/IRMMW-THz.2016.7758380.
  43. 43.
    T. Sasaki, T. Sakamoto, and M. Otsuka, Detection of Impurities in Organic Crystals by High-Accuracy Terahertz Absorption Spectroscopy,. Anal. Chem, vol. 90, no. 3, pp. 1677–1682, 2018,  https://doi.org/10.1021/acs.analchem.7b03220.CrossRefGoogle Scholar
  44. 44.
    S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu,. J. Chem. Phys, vol. 132, no. 15, 2010, 154104,  https://doi.org/10.1063/1.3382344.CrossRefGoogle Scholar
  45. 45.
    R. Dovesi et al., CRYSTAL17 munual, University of Torino, Torino, 2017.Google Scholar
  46. 46.
    R. Dovesi, A. Erba, R. Orlando, C. M. Zicovich−Wilson, B. Civalleri, L. Maschio, M. Rérat, S. Casassa, J. Baima, S. Salustro, et al., Quantummechanical condensed matter simulations with CRYSTAL, vol. 8, no. 4, e1360, 2018,  https://doi.org/10.1002/wcms.1360.
  47. 47.
    L. Maschio, B. Kirtman, R. Orlando, and M. Rèrat, Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method,. J. Chem. Phys., vol. 137, no. 20, p. 204113, 2012,  https://doi.org/10.1063/1.4767438.CrossRefGoogle Scholar
  48. 48.
    M. Ferrero, M. Rérat, B. Kirtman, and R. Dovesi, Calculation of first and second static hyperpolarizabilities of one- to three-dimensional periodic compounds. Implementation in the CRYSTAL code,. J. Chem. Phys., vol. 129, no. 24, p. 244110, 2008,  https://doi.org/10.1063/1.3043366.CrossRefGoogle Scholar
  49. 49.
    R. Dovesi et al., CRYSTAL14 User’s Manual. Torino: University of Torino, 2014.Google Scholar
  50. 50.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. vol. 77, no. 18, 3865-3868, 1996.  https://doi.org/10.1103/PhysRevLett.77.3865.
  51. 51.
    R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions,. J. Chem. Phys., vol. 72, no. 1, pp. 650–654, 1980,  https://doi.org/10.1063/1.438955.CrossRefGoogle Scholar
  52. 52.
    S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction,. J. Comput. Chem, vol. 27, no. 15, pp. 1787–1799, 2006,  https://doi.org/10.1002/jcc.20495.CrossRefGoogle Scholar
  53. 53.
    S. Grimme, J. Antony, T. Schwabe, and C. Muck-Lichtenfeld, Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio) organic molecules,. Organic & Biomolecular Chemistry, vol. 5, no. 5, pp. 741–758, 2007,  https://doi.org/10.1039/b615319b.CrossRefGoogle Scholar
  54. 54.
    C. Morgado, M. A. Vincent, I. H. Hillier, and X. Shan, Can the DFT-D method describe the full range of noncovalent interactions found in large biomolecules?,. PCCP, vol. 9, no. 4, pp. 448–451, 2007,  https://doi.org/10.1039/b615263e.CrossRefGoogle Scholar
  55. 55.
    T. van Mourik, Assessment of Density Functionals for Intramolecular Dispersion-Rich Interactions,. J. Chem. Theory Comput, vol. 4, no. 10, pp. 1610–1619, 2008,  https://doi.org/10.1021/ct800231f.CrossRefGoogle Scholar
  56. 56.
    Y. Bouteiller, J. C. Poully, C. Desfrancois, and G. Gregoire, Evaluation of MP2, DFT, and DFT-D Methods for the Prediction of Infrared Spectra of Peptides,. J. Phys. Chem. A, vol. 113, no. 22, pp. 6301–6307, 2009,  https://doi.org/10.1021/jp901570r.CrossRefGoogle Scholar
  57. 57.
    B. Civalleri, C. M. Zicovich-Wilson, L. Valenzano, and P. Ugliengo, B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals,. Crystengcomm, vol. 10, no. 4, pp. 405–410, 2008,  https://doi.org/10.1039/b715018k.CrossRefGoogle Scholar
  58. 58.
    S. L. Chaplot, N. Lehner, and G. S. Pawley, THE STRUCTURE OF ANTHRACENE-D10 AT 16-K USING NEUTRON-DIFFRACTION,. Acta Crystallographica Section B-Structural Science, vol. 38, no. FEB, pp. 483–487, 1982,  https://doi.org/10.1107/s0567740882003239.CrossRefGoogle Scholar
  59. 59.
    Y. Kai, F. Hama, N. Yasuoka, and N. Kasai, Structural chemistry of layered cyclophanes. III. Molecular structures of [2.2](2,7)pyrenophane-1,1′-diene and pyrene (redetermined) at −160°C, Acta Crystallographica Section B, vol. 34, no. 4, pp. 1263–1270, 1978,  https://doi.org/10.1107/s0567740878005312.CrossRefGoogle Scholar
  60. 60.
    P. H. C. Eilers, 2003 A Perfect Smoother, . Anal. Chem., vol. 75, no. 14, pp. 3631–3636,  https://doi.org/10.1021/ac034173t.CrossRefGoogle Scholar
  61. 61.
    P. H. C. Eilers, Parametric Time Warping,. Anal. Chem, vol. 76, no. 2, pp. 404–411, 2004  https://doi.org/10.1021/ac034800e.
  62. 62.
    H. Houjou, Evaluation of coupling terms between intra- and intermolecular vibrations in coarse-grained normal-mode analysis: Does a stronger acid make a stiffer hydrogen bond?,. J. Chem. Phys., vol. 135, no. 15, p. 154111, 2011,  https://doi.org/10.1063/1.3652102.CrossRefGoogle Scholar
  63. 63.
    H. Houjou, Modelling intra- and intermolecular vibrations under the harmonic oscillator approximation: from symmetry-adapted to coarse-grained coordinate approaches,. J. Math. Chem vol. 55, no. 2, pp. 532–551, 2017,  https://doi.org/10.1007/s10910-016-0692-x.MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    F. Zhang, K. Tominaga, M. Hayashi, and H.-W. Wang, 2014 Low-frequency vibration study of amino acids using terahertz spectroscopy and solid-state density functional theory, in Proc. SPIE 9275, Infrared, Millimeter-Wave, and Terahertz Technologies III, C.-L. Zhang. X.-C. Zhang. M. Tani, Ed., vol. 92750D, Beijing, , pp. 92750D-9.  https://doi.org/10.1117/12.2071528

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Photoscience Research CenterKobe UniversityKobeJapan
  2. 2.Center for Condensed Matter SciencesNational Taiwan UniversityTaipeiTaiwan
  3. 3.Research Institute of ElectronicsShizuoka UniversityHamamatsuJapan

Personalised recommendations