Abstract
We studied time resolution and response power dependence of three terahertz detectors based on significantly different types of field-effect transistors. We analyzed the photoresponse of custom-made Si junctionless FETs, Si-MOSFETs, and GaAs-based high-electron-mobility transistor detectors. Applying monochromatic radiation of a high-power, pulsed, line-tunable molecular THz laser, which operated at frequencies in the range from 0.6 to 3.3 THz, we demonstrated that all these detectors have at least nanosecond response time. We showed that detectors yield a linear response in a wide range of radiation power. At high powers, the response saturates varying with radiation power P as U = R0P/(1 + P/Ps), where R0 is the low-power responsivity and Ps is the saturation power. We demonstrated that the linear part response decreases with radiation frequency increase as R0 ∝ f− 3, whereas the power at which signal saturates increases as Ps ∝ f3. We discussed the observed dependencies in the framework of the Dyakonov-Shur mechanism and detector-antenna impedance matching. Our study showed that FET transistors can be used as ultrafast room temperature detectors of THz radiation and that their dynamic range extends over many orders of magnitude of power of incoming THz radiation. Therefore, when embedded with current driven read-out electronics, they are very well adopted for operation with high power pulsed sources.
This is a preview of subscription content, access via your institution.











Change history
22 September 2022
A Correction to this paper has been published: https://doi.org/10.1007/s10762-021-00782-x
References
W. Knap, M. Dyakonov, D. Coquillat, F. Teppe, N. Dyakonova, J. Lusakowski, K. Karpierz, M. Sakowicz, G. Valusis, D. Seliuta, I. Kasalynas, A. Fatimy, Y. M. Meziani, and T. Otsuji, Field effect transistors for terahertz detection: physics and first imaging applications, J. Infrared Millim. TeraHz Waves 30, 1319 (2009).
L. Vicarelli, M. S. Vitiello, D. Coquillat, A. Lombardo, A. C. Ferrari, W. Knap, M. Polini, V. Pellegrini, and A. Tredicucci, Graphene field-effect transistors as room-temperature terahertz detectors, Nature Materials 11, 865 (2012).
W. Knap and M. Dyakonov, in Handbook of Terahertz Technology ed. D. Saeedkia (Woodhead Publishing, Waterloo, Canada 2013), pp. 121-155.
S. Boppel, A. Lisauskas, and H. G. Roskos, in Handbook of Terahertz Technology ed. D. Saeedkia (Woodhead Publishing, Waterloo, Canada 2013), pp. 231-271.
S. Preu, H. Lu, M. Sherwin, and A. C. Gossard, Detection of nanosecond-scale, high power THz pulses with a field effect transistor, Rev. Sci. Instrum. 83, 053101 (2012).
T. Otsuji, Trends in the research of modern terahertz detectors: plasmon detectors, IEEE Trans. Terahertz Sci. Technol. 5, 1110 (2015).
M. Dyakonov and M. Shur, Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current, Phys. Rev. Lett. 71, 2465 (1993).
M. I. Dyakonov and M. S. Shur, Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid, IEEE Trans. Electron Devices 43, 380 (1996).
S.D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford Univ. Press 2006).
Yun-Shik Lee, Principles of Terahertz Science and Technology (Springer 2009).
Xi-Cheng Zhang and Jingzhou Xu, Introduction to THz Wave Photonics (Springer 2010).
E. Bründermann, H.-W. Hübers, and M.F. Kimmitt, Terahertz Techniques (Springer 2013).
T. Elsaesser, K. Reimann, and M. Woerner, Concepts and Applications of Nonlinear Terahertz Spectroscopy (Morgan & Claypool Publishers 2019).
V. Yu. Kachorovskii, S. L. Roumyantsev, W. Knap, and M. Shur, Performance limits for field effect transistors as terahertz detectors, Appl. Phys. Lett. 102, 223505 (2013).
J. Marczewski, W. Knap, D. Tomaszewski, M. Zaborowski, and P. Zagrajek, Silicon junctionless field effect transistors as room temperature terahertz detectors, J. Appl. Phys. 118, 104502 (2015).
M. Zaborowski, D. Tomaszewski, and J. Marczewski, A test structure for investigation of junctionless FETs as THz radiation sensors, Proc. SPIE 10175, Electron Technology Conf., 1017512 (2016).
C. Teyssandier, H. Stieglauer, E. Byk, A.-M. Couturier, P. Fellon, M. Camiade, H. Blanck, and D. Floriot, 0.1 μ m GaAs pHEMT Technology and Associated Modelling for Millimeter wave Low Noise Amplifiers, Proc. 7th European Microwave Integrated Circuits Conference, 171 (2012).
D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, Double-Slot Antennas on Extended Hemispherical and Elliptical Silicon Dielectric Lenses, IEEE Trans. on Microwave Theory and Techniques 41, 1738 (1993).
P. Kopyt, B. Salski, A. Pacewicz, P. Zagrajek, and J. Marczewski, Measurements of the responsivity of FET-based detectors of sub-THz radiation, Opto-Electron. Rev., 27, 123 (2019).
P. Olbrich, J. Karch, E. L. Ivchenko, J. Kamann, B. März, M. Fehrenbacher, D. Weiss, and S. D. Ganichev, Classical ratchet effects in heterostructures with a lateral periodic potential, Phys. Rev. B 83, 165320 (2011).
C. Drexler, N. Dyakonova, P. Olbrich, J. Karch, M. Schafberger, K. Karpierz, Yu. Mityagin, M. B. Lifshits, F. Teppe, O. Klimenko, Y. M. Meziani, W. Knap, and S. D. Ganichev, Helicity sensitive terahertz radiation detection by field effect transistors, J. Appl. Physics 111, 124504 (2012).
S. D. Ganichev, U. Rössler, W. Prettl, E. L. Ivchenko, V. V. Bel’kov, R. Neumann, K. Brunner, and G. Abstreiter, Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents, Phys. Rev. B. 66, 075328 (2002).
W. Weber, L. E. Golub, S. N. Danilov, J. Karch, C. Reitmaier, B. Wittmann, V. V. Bel’kov, E. L. Ivchenko, Z. D. Kvon, N. Q. Vinh, A.F.G. van der Meer, B. Murdin, and S. D. Ganichev, Quantum ratchet effects induced by terahertz radiation in GaN-based two-dimensional structures, Phys. Rev. B 77, 245304 (2008).
S. D. Ganichev, Ya. V. Terent’ev, and I. D. Yaroshetskii, Photon-drag photodetectors for the far-IR and submillimeter regions, Pis’ma Zh. Tekh. Fiz 11, 46 (1985) [Sov. Tech. Phys. Lett. 11, 20 (1985)].
S. D. Ganichev, S. A. Emel’yanov, A. G. Pakhomov, Ya. V. Terent’ev, and I. D. Yaroshetskii, Fast uncooled detector for far-IR and submillimeter laser beams, Pis’ma Zh. Tekh. Fiz 11, 913 (1985) [Sov. Tech. Phys. Lett. 11, 377 (1985)].
S. D. Ganichev, Tunnel ionization of deep impurities in semiconductors induced by terahertz electric fields, Physica B, 273-274, 737 (1999).
P. Olbrich, C. Zoth, P. Vierling, K.-M. Dantscher, G. V. Budkin, S. A. Tarasenko, V. V. Bel’kov, D. A. Kozlov, Z. D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, and S. D. Ganichev, Giant spin-polarized current in a Dirac fermion system at cyclotron resonance, Phys. Rev. B 87, 235439 (2013).
K.-M. Dantscher, D. A. Kozlov, P. Olbrich, C. Zoth, P. Faltermeier, M. Lindner, G. V. Budkin, S. A. Tarasenko, V. V. Bel’kov, Z.D. Kvon, N. N. Mikhailov, S. A. Dvoretsky, D. Weiss, B. Jenichen, and S. D. Ganichev, Cyclotron resonance assisted photocurrents in surface states of a 3D topological insulator based on a strained high mobility HgTe film, Phys. Rev. B 92, 165314 (2015).
W. Knap, V. Kachorovskii, Y. Deng, S. Rumyantsev, J.-Q. Lü, R. Gaska, and M. S. Shur, Nonresonant detection of terahertz radiation in field effect transistors, J. Appl. Phys. 91, 9346 (2002).
M. Sakowicz, M. B. Lifshits, O. A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, and W. Knap, Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects, J. Appl. Phys. 110, 054512 (2011).
J. Lusakowski, M. Bialek, D. Yavorskiy, J. Marczewski, P. Kopyt, W. Gwarek, W. Knap, K. Kucharski, M. Grodner, M. Gorska, and P. Grabiec, Planar antennas for detection of 340 GHz band with single Si metal-oxide-semiconductor field-effect transistors, Proc. Int. Conf. Infrared, Millimeter, and Terahertz Waves, pp. 1-2 (IEEE, Houston 2011), DOI: 10.1109/irmmw-THz.2011.6105054.
M. Sakowicz, J. Lusakowski, K. Karpierz, M. Grynberg, W. Knap, and W. Gwarek, Polarization sensitive detection of 100 GHz radiation by high mobility field-effect transistors, J. Appl. Phys. 104, 024519 (2008).
M. Sakowicz, J. Lusakowski, K. Karpierz, M. Grynberg, W. Gwarek, S. Boubanga, D. Coquillat, W. Knap, A. Shchepetov, and S. Bollaert, A High Mobility Field-Effect Transistor as an Antenna for sub-THz Radiation, AIP Conf. Proc. 1199, 503 (2010).
C. A. Balanis, Antenna theory: analysis and design (Hoboken, Wiley-Interscience 2005).
V. Yu. Kachorovskii and M. S. Shur, Field effect transistor as ultrafast detector of modulated terahertz radiation, Solid-State Electronics 52, 182 (2008).
D. B. But, C. Drexler, M. V. Sakhno, N. Dyakonova , O. Drachenko, F. F. Sizov, A. Gutin, S. D. Ganichev, and W. Knap, Nonlinear photoresponse of field effect transistors terahertz detectors at high irradiation intensities, J. Appl. Phys. 115, 164514 (2014).
A. Gutin, V. Kachorovskii, A. Muraviev, and M. Shur Plasmonic terahertz detector response at high intensities, J. Appl. Phys. 112, 014508 (2012).
A. Lisauskas, K. Ikamas, S. Massabeau, M. Bauer, D. Cibiraite, J. Matukas, J. Mangeney, M. Mittendorff, S. Winnerl, V. Krozer, and H.G. Roskos, Field-effect transistors as electrically controllable nonlinear rectifiers for the characterization of terahertz pulses, APL Photonics 3, 051705 (2018).
K. Ikamas, I. Nevinskas, A. Krotkus, and A. Lisauskas, Silicon field effect transistor as the nonlinear detector for terahertz autocorellators, Sensors 18, 3735 (2018).
M. Sakhno, F. Sizov, and A. Golenkov, Uncooled THz/sub-THz Rectifying Detectors: FET vs. SBD, J. Infr. Millimeter Terahertz Waves 34, 798 (2013).
P. Kopyt, B. Salski, J. Marczewski, P. Zagrajek, and J. Lusakowski, Parasitic Effects Affecting Responsivity of Sub-THz Radiation Detector Built of a MOSFET J. Infr. Millimeter Terahertz Waves 36, 1059 (2015).
K. Ikamas, D. Cibiraite, A. Lisauskas, M. Bauer, V. Krozer, and H.G. Roskos, Broadband terahertz power detectors based on 90-nm silicon CMOS transistors with flat responsivity up to 2.2 THz, IEEE Electron Device Lett., 39, 1413 (2018).
Acknowledgments
We thank V. Kachorovskii and A. Lisauskas for fruitful discussions. Support by the CENTERA, Deutsche Forschungsgemeinschaft (DFG), and the Volkswagen Stiftung Program (90298) is gratefully acknowledged.
Funding
This study was partially supported by the National Center for Research and Development in Poland grants LIDER/020/319/L-5/13/NCBR/2014, PBS3/B3/30/2015, and PBS3/A3/18/2015.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zagrajek, P., Danilov, S.N., Marczewski, J. et al. Time Resolution and Dynamic Range of Field-Effect Transistor–Based Terahertz Detectors. J Infrared Milli Terahz Waves 40, 703–719 (2019). https://doi.org/10.1007/s10762-019-00605-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10762-019-00605-0
Keywords
- Terahertz
- Detection
- Time resolution
- Nonlinearty