Advertisement

Terahertz Dielectric Properties of Polycrystalline MgAl2O4 Spinel Obtained by Microwave Sintering and Hot Pressing

  • S. V. Egorov
  • A. A. Sorokin
  • I. E. Ilyakov
  • B. V. Shishkin
  • E. A. Serov
  • V. V. Parshin
  • K. I. RybakovEmail author
  • S. S. Balabanov
  • A. V. Belyaev
Article
  • 56 Downloads

Abstract

This paper describes the fabrication of polycrystalline magnesium aluminate spinel (MgAl2O4) by microwave sintering and hot pressing and the investigation of its dielectric properties in the millimeter-wave and terahertz frequency range. The dielectric properties were studied in the frequency range 50–300 GHz using a spectrometer based on an open Fabry–Perot resonator with a high quality factor and in the range 0.6–3.3 THz using the time-domain spectroscopy method. The terahertz radiation was generated as a result of air breakdown using two-color laser pulses with carrier wavelengths of 800 and 400 nm. The dielectric characteristics of MgAl2O4 ceramics obtained from high-purity nanosized powders by microwave sintering and by hot pressing are compared. The refractive index of the materials varies from 2.85 to 2.95, and the dielectric loss tangent increases from 1.5 × 10−4 to 1.5 × 10−2 within the frequency range 0.05–3.3 THz. The possible use of magnesium aluminate spinel for millimeter-wave and terahertz applications is discussed.

Keywords

Magnesium aluminate spinel Microwave sintering Dielectric properties Gyrotron 

Notes

Funding Information

The study of the microwave sintering of MgAl2O4 ceramics was supported by Russian Foundation for Basic Research, grant No. 16-08-00736. The study of the sub-terahertz and terahertz dielectric properties was supported by the Russian Foundation for Basic Research and the Government of the Nizhny Novgorod region, grant No. 18-42-520015.

References

  1. 1.
    P.H. Siegel, IEEE Trans. Microw. Theory Tech. 52, 2438 (2004).CrossRefGoogle Scholar
  2. 2.
    M. Tonouchi, Nature Photonics 1, 97 (2007).CrossRefGoogle Scholar
  3. 3.
    J.H. Booske, Phys. Plasmas 15, 055502 (2008).CrossRefGoogle Scholar
  4. 4.
    R.A. Lewis, J. Phys. D: Appl. Phys. 47, 374001 (2014).CrossRefGoogle Scholar
  5. 5.
    S.S. Balabanov, A.V. Belyaev, A.V. Novikova, D.A. Permin, E.Ye. Rostokina, R.P. Yavetskiy, Inorg. Mater. 54, 1045 (2018).CrossRefGoogle Scholar
  6. 6.
    A. Krell, J. Klimke, T. Hutzler, J. Eur. Ceram. Soc 29, 275 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Dumerac, I.E. Reimanis, C. Smith, H.-J. Kleebe, M.M. Muller, Int. J. Appl. Ceram. Technol. 10, E33 (2013).CrossRefGoogle Scholar
  8. 8.
    A. Goldstein, J. Eur. Ceram. Soc. 32, 2869 (2012).CrossRefGoogle Scholar
  9. 9.
    S.S. Balabanov, R.P. Yavetskiy, A.V. Belyaev, E.M. Gavrishchuk, V.V. Drobotenko, I.I. Evdokimov, A.V. Novikova, O.V. Palashov, D.A. Permin, V.G. Pimenov, Ceram. Int. 41, 13366 (2015).CrossRefGoogle Scholar
  10. 10.
    S.V. Egorov, Yu.V. Bykov, A.G. Eremeev, A.A. Sorokin, E.A. Serov, V.V.Parshin, S.S. Balabanov, A.V. Belyaev, A.V. Novikova, D.A. Permin, Radiophys. Quantum Electron. 59, 690 (2017).CrossRefGoogle Scholar
  11. 11.
    N.McN. Alford, J. Breeze, X. Wang, S.J. Penn, S. Dalla, S.J. Webb, N. Ljepojevic, X. Aupi, J. Eur. Ceram. Soc. 21, 2605 (2001).CrossRefGoogle Scholar
  12. 12.
    S.S. Balabanov, V.E. Vaganov, E.M. Gavrishchuk, V.V. Drobotenko, D.A. Permin, A.V. Fedin, Inorg. Mater. 50, 830 (2014).CrossRefGoogle Scholar
  13. 13.
    C.-J. Ting, H.-Y. Lu, J. Am. Ceram. Soc. 83, 1592 (2000).CrossRefGoogle Scholar
  14. 14.
    M.K. Alekseev, G.I. Kulikova, M.Yu. Rusin, N.N. Savanina, S.S. Balabanov, A.V. Belyaev, E.M. Gavrishchuk, A.V. Ivanov, R.N. Rizakhanov, Inorg. Mater. 52, 324 (2016).CrossRefGoogle Scholar
  15. 15.
    S.S. Balabanov, E.M. Gavrishchuk, A.M. Kut’in, D.A. Permin, Inorg. Mater. 47, 484 (2011).CrossRefGoogle Scholar
  16. 16.
    Yu. Bykov, A. Eremeev, M. Glyavin, V. Kholoptsev, A. Luchinin, I. Plotnikov, A. Bogdashev, G. Kalynova, V. Semenov, N. Zharova, IEEE Trans. Plasma Sci. 32, 67 (2004).CrossRefGoogle Scholar
  17. 17.
    Yu.A. Dryagin, V.V. Parshin, Int. J. Infrared Millim. Waves 13, 1023 (1992).CrossRefGoogle Scholar
  18. 18.
    V.V. Parshin, M.Yu. Tretyakov, M.A. Koshelev, E.A. Serov, IEEE Sens. J. 13, 18 (2013).CrossRefGoogle Scholar
  19. 19.
    V.V. Parshin, M.Yu. Tretyakov, M.A. Koshelev, E.A. Serov, Radiophys. Quantum Electron. 52, 525 (2009).CrossRefGoogle Scholar
  20. 20.
    D. Grischkowsky, S. Keiding, M. van Exter, Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).CrossRefGoogle Scholar
  21. 21.
    K.Z. Rajab, M. Naftaly, E.H. Linfield, J.C. Nino, D. Arenas, D. Tanner, R. Mittra, M. Lanagan, J. Micro. and Elect. Pack. 5, 101 (2008).Google Scholar
  22. 22.
    V.V. Kornienko, R.A. Akhmedzhanov, I.E. Ilyakov, A.D. Mishin, P.A. Prudkovskii, O.V. Samotokhin, B.V. Shishkin, G.Kh. Kitaeva, IEEE Trans. Terahertz Sci. Technol. 5, 665 (2015).CrossRefGoogle Scholar
  23. 23.
    M. Naftaly, P.J. Greenslade, R.E. Miles, D. Evans, Opt. Mater. 31, 1575 (2009).CrossRefGoogle Scholar
  24. 24.
    D.C. Harris, L.F. Johnson, R. Seaver, T. Lewis, G. Turri, M.A. Bass, N. Haynes, Opt. Eng. 52, 087113 (2013).CrossRefGoogle Scholar
  25. 25.
    H.D. Xie, C. Chen, B.B. Su, H. Xi, Mater. Lett. 166, 167 (2016).CrossRefGoogle Scholar
  26. 26.
    W.-C. Tsai, Y.-H. Liou, Y.-C. Liou, J. Materials Sci. Engin. B 177, 1133 (2012).CrossRefGoogle Scholar
  27. 27.
    K.P. Surandran, P.V. Bijuman, P. Mohanan, M.T. Sebastian, Appl. Phys. A 81, 823 (2005).CrossRefGoogle Scholar
  28. 28.
    C.L. Huang, J.J. Wang, F.S. Yen, C.-Y. Huang, Mater. Res. Bull. 43, 1463 (2008).CrossRefGoogle Scholar
  29. 29.
    I. Kagomiya, Y. Matsuda, K. Kakimoto, H. Ohsato, Ferroelectrics 387, 1 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.G.G. Devyatykh Institute of Chemistry of High-Purity SubstancesRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations