Skip to main content
Log in

Multi-Way Quasi-Optical Waveguide Power Divider with 2D Diffraction Approximation and Experimental Verification at Millimeter Wave

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In this paper, multi-way quasi-optical parallel-plate waveguide power dividers/combiners are designed and fabricated using the 2D diffraction approximation. Shape optimization technology is applied to shape the cylindrical reflector surface to reconstruct the diffraction field to improve the magnitude and phase balance of the parallel-plate waveguide power dividers. Both a 1-to-6 way quasi-optical waveguide power divider with H-plane horn antenna array and a 1-to-10 way power divider with gap waveguide transition are analyzed and designed, respectively. We fabricated the two designed power devices at millimeter wave for verifying the validity of the design method. The measured average transmission coefficient of the 1-to-6 way power divider is − 10.8 dB from 81 to 110 GHz, corresponding to 50% power combining efficiency, while the measured back-to-back structure of the 1-to-10 way power divider/combiner features an average transmission coefficient to − 2.83 dB corresponding to 72.2% power combining efficiency over the entire W-band. The proposed power dividers/combiners and the efficient optimization method used in their design are believed to be of importance for future power device applications in millimeter wave and terahertz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Kleine-Ostmann, and T. Nagatsuma. “A review on terahertz communications research”, J. Infrared Millim. Terahertz Waves, vol. 32, no. 2, pp. 143–171, 2011.

    Article  Google Scholar 

  2. M. Mattsson, O. Zeni and M. Simkó. “Is there a biological basis for therapeutic applications of millimetre waves and THz waves?”, J. Infrared Millim. Terahertz Waves, 2018.

  3. S. Di Meo, P. F. Espín-López, A. Martellosio, et al. “On the feasibility of breast cancer imaging systems at millimeter-waves frequencies”. IEEE Trans. Microw. Theory Tech. vol. 65, no. 5, pp. 1795–1806, May 2017.

    Article  Google Scholar 

  4. F. Zhang, K. Song, G. Li, and M. Zhao, “Sub-THz four-way waveguide power combiner with low insertion loss”, J. Infrared Millim. Terahertz Waves, vol. 35, no. 5, pp. 451–457, 2014.

    Article  Google Scholar 

  5. G. Chattopadhyay, “Technology, capabilities, and performance of low power terahertz sources”, IEEE Trans. Terahertz Sci. Technol., vol. 4, no. 1, pp. 56–64, Jan. 2014.

    Article  Google Scholar 

  6. P. F. Goldsmith, “Quasioptical Systems:Gaussian Beam Quasioptical Propogation and Applications”, Wiley-IEEE Press, 1998.

  7. S.A. Kuznetsov, M.A. Astafev, M. Beruete, and M. Navarro-Cía, “Planar Holographic Metasurfaces for Terahertz Focusing,” Scientific Reports, vol. 5, no. 7738, pp. 1-8, Jan. 2015.

    Google Scholar 

  8. K. Song, F. Zhang, S. Hu, and Y. Fan, “Millimetre-wave quasi-optical low-loss power combiner based on dipole antenna,” Electron. Lett., vol. 49, no. 18, pp. 1160–1162. Aug. 2013.

    Article  Google Scholar 

  9. Al Abbas, Emad, and A. M. Abbosh. “Tunable millimeter-wave power divider for future 5G cellular networks,” Antennas and Propagation (APSURSI), 2016 IEEE International Symposium on. IEEE, 2016.

  10. M. Aghadjani, M. Erementchouk, and P. Mazumder. “Spoof Surface Plasmon Polariton Beam Splitter,” IEEE Trans. Terahertz Sci. Technol. vol. 6, no. 6, pp. 832–839. Aug. 2016.

    Article  Google Scholar 

  11. K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep., no. 6, pp. 1–6 Jun. 2016.

  12. W. Lai, N. Born, L. M. Schneider, A. Rahimi-Iman, J. C.Balzer, and M. Koch, “Broadband antireflection coating for optimized terahertz beam splitters,” Opt. Mater. Express, vol. 5, no. 12, pp. 2812–2819, Dec. 2015.

    Article  Google Scholar 

  13. R. Maaskant, W. A. Shah, A. U. Zaman, M. Ivashina, and P. S. Kildal, “Spatial Power Combining and Splitting in Gap Waveguide Technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 472–474. July 2016.

    Article  Google Scholar 

  14. T. Dresel, M. Beyerlein, and J. Schwider, “Design and fabrication of computer-generated beam-shaping holograms,” Appl. Opt. vol. 35, no. 23, pp. 4615–4621, Aug. 1996.

    Article  Google Scholar 

  15. M. S. Heimbeck, P. J. Reardon, J. Callahan, and H. O. Everitt, “Transmissive quasi-optical Ronchi phase grating for terahertz frequencies,” Opt. Lett. vol. 35, no. 21, pp. 3658–3660, Nov. 2010.

    Article  Google Scholar 

  16. M. Hoft, “Spatial power/combiner in D-band.” IEEE Trans. Microw. Theory Tech. vol. 52, no. 10, pp. 2379–2384, Oct. 2004.

    Article  Google Scholar 

  17. T. Magath, “Diffraction synthesis and experimental verification of a quasi-optical power splitter at 150GHz,” IEEE Trans. Microw. Theory Tech. vol. 52, no. 10, pp. 2385–2389, Oct. 2004.

    Article  Google Scholar 

  18. T. Magath, R. Judaschke, K. Schunemann, “2-D quasi-optical power combining oscillator array at D-band,” Microwave Symposium Diqest, 2006. IEEE MTT-S International, pp. 634–637, 2006.

  19. F. Zhang, K. Song, Y. Fan, “New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters,” Sci. Rep., 7, 41726, 2017.

    Article  Google Scholar 

  20. F. Zhang, K. Song, M. Fan, S. Hu and Y. Fan, “A bionic algorithm based synthesis of shaped reflector for a terahertz quasi-optical power combiner,” In Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 2016 IEEE MTT-S International Microwave Workshop Series on, pp. 1–3, 2016.

  21. F. Zhang, K. Song, Y. Fan, “Real-Coded Genetic Algorithm with Differential Evolution Operator for Terahertz Quasi-Optical Power Divider/Combiner Design”, Applied Computational Electromagnetics Society Journal, vol. 32, no. 10, Oct. 2017.

  22. A. Berenguer, V. Fusco, D. E. Zelenchuk, D. Sánchez-Escuderos, M. Baquero-Escudero, and V. E. Boria-Esbert, “Propagation characteristics of groove gap waveguide below and above cutoff,” IEEE Trans. Microw. Theory Tech. vol. 64, no. 1, pp. 27–36, Jan. 2016.

    Article  Google Scholar 

Download references

Funding

The work for this grant was supported in part by National Natural Science Foundation of China (Grant No: 61771094) and by Sichuan Science and Technology Program (Grant No: 2019JDRC0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaijun Song.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Song, K. & Fan, Y. Multi-Way Quasi-Optical Waveguide Power Divider with 2D Diffraction Approximation and Experimental Verification at Millimeter Wave. J Infrared Milli Terahz Waves 40, 435–446 (2019). https://doi.org/10.1007/s10762-019-00576-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00576-2

Keywords

Navigation