Skip to main content
Log in

Tunable Terahertz Transmission Properties of Double-Layered Metal Hole-Loop Arrays Using Nematic Liquid Crystal

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This article reports on the investigation, manufacture, and testing of a liquid crystal (LC)-based tunable terahertz (THz) metamaterial (MM) metal-dielectric-metal (MDM) structure, which has low insertion loss (IL) and large modulation depth (MD). The demonstrated structure consists of two parallel layers of a quartz dielectric surrounding two copper layers. The copper structures were printed on the inner surfaces of the upper and lower surfaces of the quartz substrate, to form periodic arrays of sub-wavelength circular loops. The transmission characteristics and the LC parameters are calculated and analyzed for THz electromagnetic (EM) waves in the frequency range from 220 to 330 GHz. The experimental results show that at 285.45 GHz, 294.8 GHz, 305.91 GHz, and 314.38 GHz, the IL is below 4.08 dB and an intensity MD greater than 70.56% is available for THz EM waves with normal incidence. By varying the voltage applied to the LC layer (0–4.8 V), which contains the MDM structure, the frequency corresponding to the valley is decreased to 285.45 GHz, with a frequency tunability greater than 13.5%. The theoretical calculations and experimental results are in good agreement. The MDM structure shows good prospects for THz modulators and switches, due to its excellent performance and simple planar geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Hangyo, "Development and future prospects of terahertz technology," Japanese Journal Of Applied Physics 54, 120101 (2015).

    Article  Google Scholar 

  2. M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics 1, 97–105 (2007).

    Article  Google Scholar 

  3. T. Hochrein, "Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends," Journal Of Infrared Millimeter And Terahertz Waves 36, 235–254 (2015).

    Article  Google Scholar 

  4. R. H. Xiong and J. S. Li, "Double-Layer Frequency Selective Surface for Terahertz Bandpass Filter," Journal Of Infrared Millimeter And Terahertz Waves 39, 1039–1046 (2018).

    Article  Google Scholar 

  5. J. Yang, C. G. Cai, Z. P. Yin, T. Y. Xia, S. C. Jing, H. B. Lu, and G. S. Deng, "Reflective liquid crystal terahertz phase shifter with tuning range of over 360°," IET Microwaves Antennas & Propagation 12, 1466–1469 (2018).

    Article  Google Scholar 

  6. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, and W.J. Padilla, "Perfect metamaterial absorber," Physical Review Letters 100, 207402 (2008).

    Article  Google Scholar 

  7. R. S. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. G. Xing, "A new class of electrically tunable metamaterial terahertz modulators," Optics Express 20, 28664–28671 (2012).

    Article  Google Scholar 

  8. J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, "An all-optical modulator based on a stereo graphene–microfiber structure," Light Science & Applications 4, (12):e360 (2015).

    Article  Google Scholar 

  9. D.C. Zografopoulos and R. Beccherelli, "Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching," Scientific Reports 5, 13137 (2015).

    Article  Google Scholar 

  10. W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, "Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating," Optical Materials Express 6, 597–602 (2016).

    Article  Google Scholar 

  11. T. Kleine-Ostmann and T. Nagatsuma, "A Review on Terahertz Communications Research," Journal Of Infrared Millimeter And Terahertz Waves 32, 143–171 (2011).

    Article  Google Scholar 

  12. C.M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D.R. Smith, and W.J. Padilla, "Terahertz compressive imaging with metamaterial spatial light modulators," Nature Photonics 8, 605–609 (2014).

    Article  Google Scholar 

  13. P.U. Jepsen, D.G. Cooke, and M. Koch, "Terahertz spectroscopy and imaging – Modern techniques and applications," Laser & Photonics Reviews 6, 124–166 (2012).

    Article  Google Scholar 

  14. H.T. Chen, J.F. O'Hara, A.K. Azad, D. Shrekenhamer, W. Padilla, J.M. Zide, A. Gossard, R.D. Averitt, and A.J. Taylor, "Active Terahertz Metamaterial Devices," Nature 444, 597–600 (2006).

  15. S. Bianconi, S. Wheaton, M.S. Park, I.H. Nia, and H. Mohseni, "Machine learning optimization of surface-normal optical modulators for SWIR time-of-flight 3D camera," IEEE Journal Of Selected Topics In Quantum Electronics, PP.

  16. C. Han, C. Li, J. B. Wu, X. J. Zhou, J. Li, B. B. Jin, H. B. Wang, and P. H. Wu, "A study of thermal effects in superconducting terahertz modulator by low temperature scanning laser microscope," AIP Advances 8, (6):065024 (2018).

    Article  Google Scholar 

  17. L. Cheng, Z. M. Jin, Z. W. Ma, F. H. Su, Y. Zhao, Y. Z. Zhang, T. Y. Su, Y. Sun, X. L. Xu, and Z. Meng, "Mechanical Terahertz Modulation Based on Single-Layered Graphene," Advanced Optical Materials 6, (7):1700877 (2018).

    Google Scholar 

  18. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, M. Marso, and M. Koch, "Spatially resolved measurements of depletion properties of large gate two-dimensional electron gas semiconductor terahertz modulators," Journal Of Applied Physics 105, (9):093707 (2009).

    Article  Google Scholar 

  19. R. Kersting, G. Strasser, and K. Unterrainer, "Terahertz phase modulator," Electronics Letters 36, 1156–1158 (2000).

    Article  Google Scholar 

  20. T. Kleineostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Applied Physics Letters 84, 3555–3557 (2004).

    Article  Google Scholar 

  21. G. S. Deng, P. Chen, J. Yang, Z. P. Yin, and L. Z. Qiu, "Graphene-based tunable polarization sensitive terahertz metamaterial absorber," Optics Communications 380, 101–107 (2016).

    Article  Google Scholar 

  22. B. Sensalerodriguez, R. S. Yan, M.M. Kelly, T. Fang, K. Tahy, W.S. Hwang, D. Jena, L. Liu, and H.G. Xing, "Broadband graphene terahertz modulators enabled by intraband transitions," Nature Communications 3, 780 (2012).

  23. P.B. Nagy, "An Introduction to Metamaterials and Waves in Composites," Materials Today 14, 1665–1666 (2011).

    Google Scholar 

  24. Z. P. Yin, Y. J. Lu, T. Y. Xia, W. E. Lai, J. Yang, H. B. Lu, and G. S. Deng, "Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal," RSC Advances 8, 4197–4203 (2018).

    Article  Google Scholar 

  25. N. Vieweg, M.K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, "THz Properties of Nematic Liquid Crystals," Journal Of Infrared Millimeter And Terahertz Waves 31, 1312–1320 (2010).

    Article  Google Scholar 

  26. E. Mavrona, U. Chodorow, M.E. Barnes, J. Parka, N. Palka, S. Saitzek, J.F. Blach, V. Apostolopoulos, and M. Kaczmarek, "Refractive indices and birefringence of hybrid liquid crystal - nanoparticles composite materials in the terahertz region," AIP Advances 5, (7):077143 (2015).

    Article  Google Scholar 

  27. L. Wang, X.W. Lin, W. Hu, G.H. Shao, P. Chen, L.J. Liang, B.B. Jin, P.H. Wu, H. Qian, and Y.N. Lu, "Broadband tunable liquid crystal terahertz waveplates driven with porous graphene electrodes," Light Science & Applications 4, e253 (2015).

    Article  Google Scholar 

  28. R. Kowerdziej, L. Jaroszewicz, M. Olifierczuk, and J. Parka, "Experimental study on terahertz metamaterial embedded in nematic liquid crystal," Applied Physics Letters 106, 022908–022999 (2015).

    Article  Google Scholar 

  29. J. Wang, H. Tian, Y. Wang, X. Y. Li, Y. J. Cao, L. Li, J. L. Liu, and Z. X. Zhou, "Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial," Optics Express 26, 5769–5776 (2018).

    Article  Google Scholar 

  30. S. Xia, D. X. Yang, T. Li, X. Liu, and J. Wang, "Role of surface plasmon resonant modes in anomalous terahertz transmission through double-layer metal loop arrays," Optics Letters 39, 1270–1273 (2014).

    Article  Google Scholar 

  31. S.A. Maier, "Plasmonics: Fundamentals and Applications," Springer Berlin 52, 49–74 (2007).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No.61871171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangsheng Deng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Wang, P., Gao, S. et al. Tunable Terahertz Transmission Properties of Double-Layered Metal Hole-Loop Arrays Using Nematic Liquid Crystal. J Infrared Milli Terahz Waves 40, 276–287 (2019). https://doi.org/10.1007/s10762-019-00572-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00572-6

Keywords

Navigation