Skip to main content
Log in

Optical and Electrical Characterization of Pure PMMA for Terahertz Wide-band Metamaterial Absorbers

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The characteristics of relative permittivity and reflectance for poly (methyl methacrylate) (PMMA) films prepared by spin-coating were investigated and an excellent wideband terahertz (THz) metamaterial absorber (MA) had been fabricated by employing PMMA film as the dielectric layer. XRD and AFM indicated that all the PMMA films with thicknesses from 11 to 17 μm were amorphous and extremely smooth with roughness about 0.203 nm. Raman results demonstrated that vibration strength of the same covalent bonds tends to be consistent with an increase in film thickness. The dual beam laser interferometer (DBLI) was employed to study the influence of applied frequency and thickness on the relative permittivity, and the results exhibited dielectric constants increased from 2.88 to 4.04 with the thickness increasing from 9 to 14 μm. And the dielectric constants for PMMA films with a certain thickness (8 μm) gradually declined when the applied frequency increased from 100 to 105 Hz; besides, the dielectric constant in THz band was forecasted approximately 2.5. The terahertz time domain spectrometer (THz-TDS) results revealed that the THz reflectance was of gradual degradation from 80 to 58% at 3.2 THz, as the thickness increased from 11 to 17 μm. In addition, the UV-VIS spectrum showed that thickness had little effect on reflectance and transmittance in visible region, leading to the almost same Eg (energy gap) about 3.7 eV. At last, by employing PMMA film as the dielectric layer, a highly wideband metamaterial absorber with absorption > 80% from 4.1 to 7.4 THz was fabricated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Alibakhshi-Kenari, M. Naser-Moghadasi, B.S. Virdee, A. Andujar, J. Anguera, Compact antenna based on a composite right/left-handed transmission line. Microwave and Optical Technology Letters, 57 (2015) 1785–1788.

    Article  Google Scholar 

  2. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science, 314 (2006) 977–980.

    Article  Google Scholar 

  3. J.B. Pendry, Negative refraction makes a perfect lens. Physical Review Letters, 85 (2000) 3966–3969.

    Article  Google Scholar 

  4. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science, 292 (2001) 77–79.

    Article  Google Scholar 

  5. M. Alibakhshikenari, B.S. Virdee, A. Ali, E. Limiti, Extended Aperture Miniature Antenna Based on CRLH Metamaterials for Wireless Communication Systems Operating Over UHF to C-Band. Radio Science, 53 (2018) 154–165.

    Article  Google Scholar 

  6. M. Alibakhshi-Kenari, M. Naser-Moghadasi, R.A. Sadeghzadeh, B.S. Virdee, E. Limiti, Traveling-wave antenna based on metamaterial transmission line structure for use in multiple wireless communication applications. Aeu-International Journal of Electronics and Communications, 70 (2016) 1645–1650.

    Article  Google Scholar 

  7. M. Alibakhshi-Kenari, M. Naser-Moghadasi, R.A. Sadeghzadeh, Composite right-left-handed-based antenna with wide applications in very-high frequency-ultra-high frequency bands for radio transceivers. Iet Microwaves Antennas & Propagation, 9 (2015) 1713–1726.

    Article  Google Scholar 

  8. A. Noor, Z. Hu, Study of Wideband, Wide Angle, Polarization Independent Metamaterial Hilbert Curve Absorbing Screen for Terahertz Bolometers. Journal of Infrared Millimeter and Terahertz Waves, 31 (2010) 791–798.

    Article  Google Scholar 

  9. F. Alves, D. Grbovic, G. Karunasiri, Investigation of MEMS bi-material sensors with metamaterial absorbers for THz imaging, in: T. George, M.S. Islam, A.K. Dutta (Eds.) Micro- and Nanotechnology Sensors, Systems, and Applications Vi2014.

  10. B.X. Wang, G.Z. Wang, T. Sang, Simple design of novel triple-band terahertz metamaterial absorber for sensing application. Journal of Physics D-Applied Physics, 49 (2016) 7.

    Google Scholar 

  11. S.S. Dhillon, M.S. Vitiello, E.H. Linfield, A.G. Davies, M.C. Hoffmann, J. Booske, C. Paoloni, M. Gensch, P. Weightman, G.P. Williams, E. Castro-Camus, D.R.S. Cumming, F. Simoens, I. Escorcia-Carranza, J. Grant, S. Lucyszyn, M. Kuwata-Gonokami, K. Konishi, M. Koch, C.A. Schmuttenmaer, T.L. Cocker, R. Huber, A.G. Markelz, Z.D. Taylor, V.P. Wallace, J.A. Zeitler, J. Sibik, T.M. Korter, B. Ellison, S. Rea, P. Goldsmith, K.B. Cooper, R. Appleby, D. Pardo, P.G. Huggard, V. Krozer, H. Shams, M. Fice, C. Renaud, A. Seeds, A. Stoehr, M. Naftaly, N. Ridler, R. Clarke, J.E. Cunningham, M.B. Johnston, The 2017 terahertz science and technology roadmap. Journal of Physics D-Applied Physics, 50 (2017) 043001 (49pp). https://doi.org/10.1088/1361-6463/50/4/043001.

  12. M. Nasr, J.T. Richard, S.A. Skirlo, M.S. Heimbeck, J.D. Joannopoulos, M. Soljacic, H.O. Everitt, Narrowband Metamaterial Absorber for Terahertz Secure Labeling. Journal of Infrared Millimeter and Terahertz Waves, 38 (2017) 1120–1129.

    Article  Google Scholar 

  13. X. Yan, L.-J. Liang, X. Ding, J.-Q. Yaoa, Solid analyte and aqueous solutions sensing based on a flexible terahertz dual-band metamaterial absorber. Optical Engineering, 56 (2017) 027104 (6pp). https://doi.org/10.1117/1.oe.56.2.027104.

  14. G. Deng, J. Yang, Z. Yin, Broadband terahertz metamaterial absorber based on tantalum nitride. Applied Optics, 56 (2017) 2449–2454.

    Article  Google Scholar 

  15. C. Feng, F. Shi, J. Shao, Q. Li, H. Yu, Pneumatically Actuated Tunable Terahertz Metamaterial Absorber With Dual-Side Tuning Capability. Ieee Photonics Journal, 9 (2017) 1–9. https://doi.org/10.1109/jphot.2017.2713805.

  16. B.-X. Wang, G.-Z. Wang, X. Zhai, L.-L. Wang, Polarization Tunable Terahertz Metamaterial Absorber. Ieee Photonics Journal, 7 (2015). https://doi.org/10.1109/jphot.2015.2448718.

  17. R. Yahiaoui, S. Tan, L. Cong, R. Singh, F. Yan, W. Zhang, Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. Journal of Applied Physics, 118 (2015) 083103 (6pp). https://doi.org/10.1063/1.4929449.

  18. S.T. Bui, X.K. Bui, T.T. Nguyen, P. Lievens, Y. Lee, D.L. Vu, Thermally tunable magnetic metamaterials at THz frequencies. Journal of Optics, 15 (2013) 075101.

    Article  Google Scholar 

  19. S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, Y. Ma, High-performance terahertz wave absorbers made of silicon-based metamaterials. Applied Physics Letters, 107 (2015) 073903 (5pp). https://doi.org/10.1063/1.4929151.

  20. X. Zhao, K. Fan, J. Zhang, H.R. Seren, G.D. Metcalfe, M. Wraback, R.D. Averitt, X. Zhang, Optically tunable metamaterial perfect absorber on highly flexible substrate. Sensors and Actuators a-Physical, 231 (2015) 74–80.

    Article  Google Scholar 

  21. X. Zhao, J. Zhang, K. Fan, G. Duan, G.D. Metcalfe, M. Wraback, X. Zhang, R.D. Averitt, Nonlinear terahertz metamaterial perfect absorbers using GaAs Invited. Photonics Research, 4 (2016) A16-A21.

    Article  Google Scholar 

  22. W. Wang, K. Wang, Z. Yang, J. Liu, Experimental demonstration of an ultra-flexible metamaterial absorber and its application in sensing. Journal of Physics D-Applied Physics, 50 (2017) 135108 (7pp). https://doi.org/10.1088/1361-6463/aa5e8b.

  23. S.K.P. Hussan, M.S. Thayyil, S.K. Deshpande, T.V. Jinitha, J. Kolte, Development of ion conducting ionic liquid-based gel polymer electrolyte membrane PMMA/BMPyr.TFSI - With improved electrical, optical, thermal and structural properties. Solid State Ionics, 310 (2017) 166–175.

    Article  Google Scholar 

  24. S. Sathish, B.C. Shekar, Preparation and characterization of nano scale PMMA thin films. Indian Journal of Pure & Applied Physics, 52 (2014) 64–67.

    Google Scholar 

  25. T. Coan, G.S. Barroso, R.A.F. Machado, F.S. de Souza, A. Spinelli, G. Motz, A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection. Progress in Organic Coating, 89 (2015) 220–230.

    Article  Google Scholar 

  26. M. Naftaly, R.E. Miles, Terahertz time-domain spectroscopy for material characterization. Proceedings of the IEEE, 95 (2007) 1658–1665.

    Article  Google Scholar 

  27. E.V. Fedulova, M.M. Nazarov, A.A. Angeluts, M.S. Kitai, V.I. Sokolov, A.P. Shkurinov, Studying of dielectric properties of polymers in the terahertz frequency range, in: V.V. Tuchin, E.A. Genina, I.V. Meglinski (Eds.) Saratov Fall Meeting 2011: Optical Technologies in Biophysics and Medicine Xiii 2012.

  28. H. Xia, R. Yang, H. Li, Q. Zhang, X. Wang, l. Wei, Raman spectrum analysis of phase separation behavior of PS/PMMA blend films. Journal of Yili Normal University, Journal of Yili Normal University, 10(4) (2016) 19–24.

  29. K. Darowicki, M. Szocinski, K. Schaefer, D.J. Mills, Investigation of morphological and electrical properties of the PMMA coating upon exposure to UV irradiation based on AFM studies. Progress in Organic Coating, 71 (2011) 65–71.

    Article  Google Scholar 

  30. F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, J. Li, Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Optics Communication, 332 (2014) 321–326.

    Article  Google Scholar 

  31. F. Hu, L. Wang, B. Quan, X. Xu, Z. Li, Z. Wu, X. Pan, Design of a polarization insensitive multiband terahertz metamaterial absorber. Journal of Physics D-Applied Physics, 46 (2013) 195103 (8pp). https://doi.org/10.1088/0022-3727/46/19/195103.

  32. W. Pan, X. Yu, J. Zhang, W. Zeng, A Broadband Terahertz Metamaterial Absorber Based on Two Circular Split Rings. Ieee Journal of Quantum Electronics, 53 (2017). https://doi.org/10.1109/jqe.2016.2643279.

  33. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Physical Review, 83 (1951) 121–124.

    Article  Google Scholar 

  34. A. Das, A.K. Chikkala, G.P. Bharti, R.R. Behera, R.S. Mamilla, A. Khare, P. Dobbidi, Effect of thickness on optical and microwave dielectric properties of Hydroxyapatite films deposited by RF magnetron sputtering. Journal of Alloys and Compounds, 739 (2018) 729–736.

    Article  Google Scholar 

  35. V. Ion, F. Craciun, N.D. Scarisoreanu, A. Moldovan, A. Andrei, R. Birjega, C. Ghica, F. Di Pietrantonio, D. Cannata, M. Benetti, M. Dinescu, Impact of thickness variation on structural, dielectric and piezoelectric properties of (Ba, Ca) (Ti, Zr) O-3 epitaxial thin films. Scientific Reports, 8 (2018) 8:2056. https://doi.org/10.1038/s41598-018-20149-y.

  36. H.M. Zidan, M. Abu-Elnader, Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Physica B-Condensed Matter, 355 (2005) 308–317.

    Article  Google Scholar 

  37. M. Ghasemi, P.K. Choudhury, M.A. Baqir, M.A. Mohamed, A.R.M. Zain, B.Y. Majlis, Metamaterial absorber comprising chromium-gold nanorods-based columnar thin films. Journal of Nanophotonics, 11 (2017) 043505 (10pp). https://doi.org/10.1117/1.jnp.11.043505.

  38. G. Shen, M. Zhang, Y. Ji, W. Huang, H. Yu, J. Shi, Broadband terahertz metamaterial absorber based on simple multi-ring structures. Aip Advances, 8 (2018) 075206(8). https://doi.org/10.1063/1.5024606.

  39. Y. Wen, W. Ma, J. Bailey, G. Matmon, X. Yu, Broadband terahertz metamaterial absorber Based on asymmetric resonators with perfect absorption. Ieee Transactions on Terahertz Science and Technology, 5 (2015) 406–411.

    Article  Google Scholar 

  40. S. Liu, H.B. Chen, T.J. Cui, A broadband terahertz absorber using multi-layer stacked bars. Applied Physics Letters, 106 (2015) 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Song, L. & Zhang, T. Optical and Electrical Characterization of Pure PMMA for Terahertz Wide-band Metamaterial Absorbers. J Infrared Milli Terahz Waves 40, 80–91 (2019). https://doi.org/10.1007/s10762-018-0553-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0553-8

Keywords

Navigation