Skip to main content
Log in

An Ellipsometric Technique with an ATR Module and a Monochromatic Source of Radiation for Measurement of Optical Constants of Liquids in the Terahertz Range

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Measuring the optical constants of liquids, especially water-containing solutions, is very difficult in the terahertz range. The well-known methods of measurement of the refractive index and absorption coefficient in this range include time-domain spectroscopy and Fourier-transform spectrometry. We have developed a highly sensitive ellipsometry method for measuring the optical constants of liquids using the tunable monochromatic radiation from the Novosibirsk free-electron laser. The ellipsometer is supplemented with an internal reflection module for the measurement of highly absorbing samples. The angle of incidence on the sample in the silicon prism of the module has been optimized for maximum sensitivity to parameters to measure. Measurements of the optical constants of various liquids have been performed, and a sensitivity of 0.01 has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 10, pp. 2438–2447, 2004.

    Article  Google Scholar 

  2. N. Nandi, K. Bhattacharyya, and B. Bagchi, “Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems,” Chemical Reviews, vol. 100, no. 6, pp. 2013–2045, 2000.

    Article  Google Scholar 

  3. G. M. Hale and M. R. Querry, "Optical Constants of Water in the 200-nm to 200-μm Wavelength Region," Appl. Opt. 12, 555–563, 1973.

    Article  Google Scholar 

  4. Møller, Uffe, Jacob Riis Folkenberg, and Peter Uhd Jepsen. "Dielectric properties of water in butter and water–AOT–heptane systems measured using terahertz time-domain spectroscopy." Applied spectroscopy 64.9, 1028–1036, 2010.

    Article  Google Scholar 

  5. P. U. Jepsen, U. Møller, H. Merbold, “Investigation of aqueous alcohol and sugar solutions with reflection terahertz time-domain spectroscopy”. Optics Express, 15(22), 14717–14737, 2007.

    Article  Google Scholar 

  6. Hirori, Hideki, et al. "Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses." Japanese journal of applied physics 43.10A L1287, 2004.

    Article  Google Scholar 

  7. Ya, Hiroyuki, M. Nagai, and K. Tanaka. "Origin of the fast relaxation component of water and heavy water revealed by terahertz time-domain attenuated total reflection spectroscopy." Chemical Physics Letters 464.4-6 166–170, 2008.

    Google Scholar 

  8. H. Fujiwara Spectroscopic ellipsometry: principles and applications. – John Wiley & Sons, 2007.

  9. A. Dobroiu, C. Otani. "Measurement of the complex refractive index of liquids in the terahertz range using ellipsometry." Infrared Millimeter and Terahertz Waves (IRMMW-THz), 2010 35th International Conference on. IEEE, 2010.

  10. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Applied Optics, vol. 43, no. 15, pp. 3028–3036, 2004.

    Article  Google Scholar 

  11. “Ellipsometry of Functional Organic Surfaces and Films,” Ellipsometry of Functional Organic Surfaces and Films, vol. 52, pp. 1–363, 2014.

  12. D. Fischer, A. Hertwig, U. Beck, V. Lohse, D. Negendank, M. Kormunda, and N. Esser, “Thin SnOx films for surface plasmon resonance enhanced ellipsometric gas sensing (SPREE),” Beilstein Journal of Nanotechnology, vol. 8, pp. 522–529, 2017.

    Article  Google Scholar 

  13. H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated Total Reflection Spectroscopy in Time Domain Using Terahertz Coherent Pulses” Jpn.J.Appl.Phys., vol. 43, no. 10A, pp. L1287-L1289, 2004.

    Article  Google Scholar 

  14. A.Soltani, D. Jahn, L. Duschek, E. Castro-Camus, M.Koch, and W. Withayachumnankul, “Attenuated Total Reflection Terahertz Time-Domain Spectroscopy: Uncertainty Analysis and Reduction Scheme IEEE Trans.Terahertz Sci. Technol.,vol.6, no.1, pp.32–39, 2016

  15. A. Soltani, L. Duschek, S.F. Busch, T. Probst, E. Castro-Camus, and M.Koch “A novel accurate methodfor attenuated total reflection spectroscopy”, in 2014 39th International Conference on Infrared Millimeter, and Terahertz waves (IRMMW-THz), 2014, pp. 1–2.

  16. I. A. Azarov, V. A. Shvets, V. Y. Prokopiev, S. A. Dulin, S. V. Rykhlitskii, Y. Y. Choporova, B. A. Knyazev, V. N. Kruchinin, and M. V. Kruchinina, “A terahertz ellipsometer,” Instruments and Experimental Techniques, vol. 58, no. 3, pp. 381–388, 2015.

    Article  Google Scholar 

  17. O. A. Shevchenko, V. S. Arbuzov, N. A. Vinokurov, P. D. Vobly, V. N. Volkov, Y. V. Getmanov, I. V. Davidyuk, O. I. Deychuly, E. N. Dementyev, B. A. Dovzhenko, B. A. Knyazev, E. I. Kolobanov, A. A. Kondakov, V. R. Kozak, E. V. Kozyrev, V. V. Kubarev, G. N. Kulipanov, E. A. Kuper, I. V. Kuptsov, G. Y. Kurkin, S. A. Krutikhin, L. E. Medvedev, S. V. Motygin, V. K. Ovchar, V. N. Osipov, V. M. Petrov, A. M. Pilan, V. M. Popik, V. V. Repkov, T. V. Salikova, I. K. Sedlyarov, S. S. Serednyakov, A. N. Skrinsky, S. V. Tararyshkin, A. G. Tribendis, V. G. Cheskidov, K. N. Chernov, and M. A. Shcheglov, “Novosibirsk free electron laser: recent achievements and future prospects,” Radiophysics and Quantum Electronics, vol. 59, no. 8–9, pp. 605–612, 2017.

    Article  Google Scholar 

  18. G. N. Kulipanov et al. “Novosibirsk free electron laser—facility description and recent experiments” IEEE transactions on terahertz science and technology, vol. 5, no. 5, pp. 798–809, 2015.

    Article  Google Scholar 

  19. Palik, Edward D., ed. Handbook of optical constants of solids. Vol. 3. Academic press, 1998.

  20. R. M. A. Azzam, N. M. Bashara Ellipsometry and polarized light. – North-Holland. sole distributors for the USA and Canada, Elsevier Science Publishing Co., Inc., 1987.

  21. in catalogues of TYDEX, J. S. Co, http://www.tydexoptics.com/pdf/IR_Polarizers.pdf. Accessed 6 Nov 2018

Download references

Funding

Operation of the user station “TeraRad,” belonging to the Novosibirsk State University, was supported by the Ministry of Education and Science of the Russian Federation. The experiments with the attenuated total reflection system was supported by the Russian Science Foundation (project N 14-50-00080). The experiments were carried out with the application of equipment belonging to the Siberian Center of Synchrotron and Terahertz Radiation (project RFMEFI62117X0012). The authors are grateful to the NovoFEL team for the invaluable support of the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Yu. Choporova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarov, I.A., Choporova, Y.Y., Shvets, V.A. et al. An Ellipsometric Technique with an ATR Module and a Monochromatic Source of Radiation for Measurement of Optical Constants of Liquids in the Terahertz Range. J Infrared Milli Terahz Waves 40, 200–209 (2019). https://doi.org/10.1007/s10762-018-0549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0549-4

Keywords

Navigation