Skip to main content
Log in

Optimization and Improvement of Output Performance in G-Band Extended Interaction Klystron

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

To improve the output performance of G-band extended interaction klystron (EIK), several practicable methods have been discussed. Firstly, the synchronization characteristics of the electron beam with the operating mode are analyzed in order to obtain large output power for optimized period. The influence of input gap voltage on the beam-wave interaction is studied, and the well-matched condition is established by optimizing the structure of input cavity. The gap length of output cavity is optimized to improve the electric field distribution. By adopting the optimized gap length and non-uniform gap lengths, the output power significantly increases from 360 to 570 W and 660 W, respectively; the corresponding bandwidth reaches to 650 MHz and 470 MHz. Moreover, AJDISK calculation is adopted to compare the results with CST simulation, and the similar gains and tendencies validate the relative reliability of our designed beam-wave interaction circuit. Therefore, our proposed methods for improving the output performance of G-band EIK are feasible and utilizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. H. Siegel, IEEE Trans. Micro. Theory Tech. 3, 910 (2002).

    Article  Google Scholar 

  2. J. H. Booske, Phys. Plasmas 15, 055502 (2008).

    Article  Google Scholar 

  3. R. A. Lewis, J. Phys. D: Appl. Phys. 47, 374001 (2014).

    Article  Google Scholar 

  4. B. Steer, A. Roitman, P. Horoyski, M. Hyttinen, R. Dobbs, and D. Berry, in Proceedings of the IEEE International Pulsed Power Conference, Albuquerque, USA, 17–22 June 2007, pp. 1049–1053.

  5. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. Park, J. Park, and R. J. Temkin, IEEE Trans. Terahertz Sci. Technol. 1, 54 (2011).

    Article  Google Scholar 

  6. M. Chodorow and T. Wessel-Berg, IRE Trans. Electron Devices 8, 44 (1961).

    Article  Google Scholar 

  7. A. Roitman, D. Berry, and B. Steer, IEEE Trans. Electron Devices 52, 895(2005).

    Article  Google Scholar 

  8. G. Liu, W. He, A. W. Cross, H. Yin, and D. Bowes, J. Phys. D: Appl. Phys. 46, 345102 (2013).

    Article  Google Scholar 

  9. Y. Yin, W. He, L. Zhang, H. Yin, and A. W. Cross, Phys. Plasmas 22, 073102 (2015).

    Article  Google Scholar 

  10. A. Srivastava, Eur. J. Adv. Eng. Technol. 2, 54 (2015).

    Google Scholar 

  11. K. T. Nguyen, J. Pasour, E. L. Wright, D. E. Pershing, and B, Levush, in Proceedings of the IEEE International Vacuum Electronics Conference, Rome, Italy, 28–30 April 2009, pp. 298–299.

  12. D. Berry, H. Deng, R. Dobbs, P. Horoyski, M. Hyttinen, A. Kingsmill, R. MacHattie, A. Roitman, E. Sokol, and B. Steer, IEEE Trans. Electron Devices 61, 1830 (2014).

    Article  Google Scholar 

  13. R. Li, C. Ruan, and H. Zhang, Phys. Plasmas 25, 033107 (2018).

    Article  Google Scholar 

  14. S. Chen, C. Ruan, W. Yong, C. Zhang, D. Zhao, X. Yang, and S. Wang, IEEE Trans. Plasma Sci. 42, 91 (2014).

    Article  Google Scholar 

  15. Y. Huang, M.S. thesis (University of Electronic Science and Technology of China, Chengdu, China, 2014).

  16. A. S. Gilmour, Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers, and Gyrotrons (Artech HouseBooks, Norwood, US, 2011), Chap. 11.

  17. C. B. Wilsen, J. W. Luginsland, Y. L. Yue, T. M. Antonsen, D. P. Chernin, P. M. Tchou, M. W. Keyser, R. M. Gilgenbach, and L. D. Ludeking, IEEE Trans. Plasma Sci. 30, 1160 (2002).

    Article  Google Scholar 

  18. J. M. Vaughan, IEEE Trans. Electron Devices 11, 2510 (1985).

    Article  Google Scholar 

  19. G. Caryotakis, Stanford Linear Accelerator Center, paper No. SLAC-PUB-10620, 2004.

  20. Y. Ding, Design, Manufacture and Application of High Power Klystron (National Defense Industry Press, Beijing, 2010), p. 53.

    Google Scholar 

  21. Y. M. Shin, L. R. Barnett, and N. C. Luhmann, IEEE Trans. Electron Devices 56, 3196 (2009).

    Article  Google Scholar 

  22. A. Baig, D. Gamzina, T. Kimura, J. Atkinson, C. Domier, B. Popovic, L. Himes, R. Barchfeld, M. Field, and N. C. Luhmann, IEEE Trans. Electron Devices 64, 2390 (2017).

    Article  Google Scholar 

  23. CST Corp, “CST PS Tutorial,” Darmstadt, Germany, see http://www.cst-china.cn

  24. “User Manual CST Particle Studio SUITE” (CST Corp., Darmstadt, Germany, 2012).

  25. A. Jensen, M. Fazio, J. Neilson, and G. Scheitrum, IEEE Trans. Electron Devices 61, 1666 (2014).

    Article  Google Scholar 

Download references

Acknowledgments

The authors give thanks to Prof. Jinjun Feng in the Vacuum Electronics National Laboratory, Beijing Vacuum Electronics Research Institute, China, for his sincere supports for the CST software supporting and research works in the paper.

Funding

This work was supported by the National Natural Science Foundation of China under Grant 61831001, the High-Level Talent Introduction Project of Beihang University (Grant No. 29816248), and the Youth-Top-Talent Support Project of Beihang University (Grant No. KG12000801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunjun Ruan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Ruan, C., Zhang, H. et al. Optimization and Improvement of Output Performance in G-Band Extended Interaction Klystron. J Infrared Milli Terahz Waves 40, 5–16 (2019). https://doi.org/10.1007/s10762-018-0546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0546-7

Keywords

Navigation