Skip to main content
Log in

Design of Planar Millimeter-Wave Metallic Structures for Wakefield Acceleration

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Linear accelerators operating at millimeter or sub-terahertz frequencies and short pulse duration have the advantages of lower power consumption and high repetition rate. In this paper planar metallic accelerating structures with different modes operating at 210 GHz were designed. A tolerance study was also carried out to determine the sensitivities of the geometric parameters to the wakefield acceleration performance. The generated Wakefield was simulated using the beam parameter of the Compact Linear Advanced Research Accelerator (CLARA) test facility at Daresbury Laboratory. For a 55 MeV single electron bunch with charge of 250 pC and a bunch length of 0.27 mm (0.9 ps), an equivalent acceleration gradient of 20 MV/m was achieved in the simulation. The relatively modest acceleration gradient was limited by the charge in a single bunch. The acceleration gradient could be further improved by using a bunch train which has larger total bunch charge. From the simulation, the acceleration gradient of 100 MV/m can be generated when it is driven by a 10-bunch beam train.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Wilson, Science 164 (1969), no. 3880, 674. https://doi.org/10.1126/science.164.3880.674-a.

  2. T. Raubenheimer, C. Adolphsen, D. Burke, P. Chen, S. Ecklund, J. Irwin, G. Loew, T. Markiewicz, R. Miller, E. Paterson, N. Phinney, K. Ross, R. Ruth, J. Sheppard, H. Tang, K. Thompson, and P. Wilson, In proceedings particle accelerator conference, vol. 2, pp 698–700, 1995. https://doi.org/10.1109/PAC.1995.504762.

  3. A. De Roeck, J. Ellis, C. Grojean, S. Heinemeyer, K. Jakobs, G. Weiglein, J. Wells, G. Azuelos, S. Dawson, B. Gripaios, T. Han, J. Hewett, M. Lancaster, C. Mariotti, F. Moortgat, G. Moortgat-Pick, G. Polesello, S. Riemann, M. Schumacher, K. Assamagan, P. Bechtle, M. Carena, G. Chachamis, K. F. Chen, S. De Curtis, K. Desch, M. Dittmar, H. Dreiner, M. Dührssen, B. Foster, M. T. Frandsen, A. Giammanco, R. Godbole, S. Gopalakrishna, P. Govoni, J. Gunion, W. Hollik, W. S. Hou, G. Isidori, A. Juste, J. Kalinowski, A. Korytov, E. Kou, S. Kraml, M. Krawczyk, A. Martin, D. Milstead, V. Morton-Thurtle, K. Moenig, B. Mele, E. Ozcan, M. Pieri, T. Plehn, L. Reina, E. Richter-Was, T. Rizzo, K. Rolbiecki, F. Sannino, M. Schram, J. Smillie, S. Sultansoy, J. Tattersall, P. Uwer, B. Webber, and P. Wienemann, The European Physical Journal C 66 (2010), no. 3, 525. https://doi.org/10.1140/epjc/s10052-010-1244-3.

  4. F. V. Hartemann and F. Albert, Technical Report LLNL-TR-416320, 2009. https://doi.org/10.2172/967742.

  5. T. Sakurai, H. Ego, T. Inagaki, T. Asaka, D. Suzuki, S. Miura, and Y. Otake, Phys. Rev. Accel. Beams 20 (2017), 042003. https://doi.org/10.1103/PhysRevAccelBeams.20.042003.

  6. T. Argyropoulos, N. Catalan-Lasheras, A. Grudiev, G. Mcmonagle, E. Rodriguez-Castro, I. Syrachev, R. Wegner, B. Woolley, W. Wuensch, H. Zha, V. Dolgashev, G. Bowden, A. Haase, T.G. Lucas, M. Volpi, D. Esperante-Pereira, and R. Rajamäki, Phys. Rev. Accel. Beams 21 (2018), 061001. https://doi.org/10.1103/PhysRevAccelBeams.21.061001.

  7. S. M. Hooker, Nature Photon. 7 (2013), 775. https://doi.org/10.1038/nphoton.2013.234.

  8. E. A. Peralta, K. Soong, R. J. England, E. R. Colby, Z. Wu, B. Montazeri, C. McGuinness, J. McNeur, K. J. Leedle, D. Walz, E. B. Sozer, B. Cowan, B. Schwartz, G. Travish, and R. L. Byer, Vol. 503, 2013. EP.

  9. S. Jamison et al., In Proceedings, 28th International Linear Accelerator Conference (LINAC16): East Lansing, Michigan, September 25-30, 2016 (2017), p. MOOP09. https://doi.org/10.18429/JACoW-LINAC2016-MOOP09.

  10. J. A. Clarke, D. Angal-Kalinin, N. Bliss, R. Buckley, S. Buckley, R. Cash, P. Corlett, L. Cowie, G. Cox, G. P. Diakun, D. J. Dunning, B. D. Fell, A. Gallagher, P. Goudket, A. R. Goulden, D. M. P. Holland, S. P. Jamison, J. K. Jones, A. S. Kalinin, W. Liggins, L. Ma, K. B. Marinov, B. Martlew, P. A. McIntosh, J. W. McKenzie, K. J. Middleman, B. L. Militsyn, A. J. Moss, B. D. Muratori, M. D. Roper, R. Santer, Y. Saveliev, E. Snedden, R. J. Smith, S. L. Smith, M. Surman, T. Thakker, N. R. Thompson, R. Valizadeh, A. E. Wheelhouse, P. H. Williams, R. Bartolini, I. Martin, R. Barlow, A. Kolano, G. Burt, S. Chattopadhyay, D. Newton, A. Wolski, R. B. Appleby, H. L. Owen, M. Serluca, G. Xia, S. Boogert, A. Lyapin, L. Campbell, B. W. J. McNeil, and V. V. Paramonov, Journal of Instrumentation 9 (2014), no. 05, T05001.

  11. P. McIntosh et al., In Proceedings, 5th International Particle Accelerator Conference (IPAC 2014): Dresden, Germany, June 15-20, 2014 (2014), p WEPME083.

  12. M. Dal Forno, V. Dolgashev, G. Bowden, C. Clarke, M. Hogan, D. McCormick, A. Novokhatski, B. O’Shea, B. Spataro, S. Weathersby, and S. G. Tantawi, Phys. Rev. Accel. Beams 19 (2016), 111301. https://doi.org/10.1103/PhysRevAccelBeams.19.111301.

  13. M. Dal Forno, V. Dolgashev, G. Bowden, C. Clarke, M. Hogan, D. McCormick, A. Novokhatski, B. Spataro, S. Weathersby, and S. G. Tantawi, Phys. Rev. Accel. Beams 19 (2016), 051302. https://doi.org/10.1103/PhysRevAccelBeams.19.051302.

  14. D. Wang, S. Antipov, C. Jing, J. G. Power, M. Conde, E. Wisniewski, W. Liu, J. Qiu, G. Ha, V. Dolgashev, C. Tang, and W. Gai, Phys. Rev. Lett. 116 (2016), 054801. https://doi.org/10.1103/PhysRevLett.116.054801.

  15. C. Corp, CST STUDIO SUITE, www.cst.com.

  16. K. L. F. Bane and G. Stupakov, Phys. Rev. ST Accel. Beams 6 (2003), 024401. https://doi.org/10.1103/PhysRevSTAB.6.024401.

  17. M. D. Forno, V. Dolgashev, G. Bowden, C. Clarke, M. Hogan, D. McCormick, A. Novokhatski, B. O’Shea, B. Spataro, S. Weathersby, S. G. Tantawi, and Nuclear Instruments, Methods in physics research section A accelerators, spectrometers, Detectors and Associated Equipment 864 (2017), 12. https://doi.org/10.1016/j.nima.2017.05.014.

  18. F. Gao, M. E. Conde, W. Gai, C. Jing, R. Konecny, W. Liu, J. G. Power, T. Wong, and Z. Yusof, Phys Rev. ST Accel. Beams 11 (2008), 041301. https://doi.org/10.1103/PhysRevSTAB.11.041301.

  19. D. M. Pozar, Microwave engineering, 4th ed., Hoboken, Wiley, 2012.

Download references

Acknowledgements

The authors would like to thank Dr. Yuri Saveliv of ASTeC and the Cockcroft Institute for the useful discussion on the CLARA test facility at Daresbury Laboratory, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Zhang.

Additional information

This work was supported by STFC Cockcroft Institute Core Grant ST/P002056/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., He, W., Jamison, S. et al. Design of Planar Millimeter-Wave Metallic Structures for Wakefield Acceleration. J Infrared Milli Terahz Waves 40, 48–62 (2019). https://doi.org/10.1007/s10762-018-0545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0545-8

Keywords

Navigation