Skip to main content
Log in

Performance Comparison of Time-Domain Terahertz, Multi-terahertz, and Fourier Transform Infrared Spectroscopies

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Time-domain terahertz (THz), multi-terahertz, and Fourier transform infrared (FTIR) spectroscopies access partly similar and partly complementary spectral ranges of the far-infrared region. We introduce an approach enabling a direct comparison of their performance in terms of the signal-to-noise ratio (SNR) and dynamic range (DR), normalized by the time required to obtain one useful data point in the frequency domain. Several configurations of a commercial FTIR spectrometer are compared to our various custom-built time-domain systems (including femtosecond oscillator and amplifier-based THz and multi-THz setups). We find that the normalized SNR of the FTIR systems is generally better than that of the time-domain setups, which is attributed to the noise of the femtosecond laser output compared to the black body radiation source. On the other hand, the coherent detection of the THz field in the time-domain systems leads to a dramatically better normalized DR than in the FTIR configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.-E. Peiponen, J. A. Zeitler, M. Kuwata-Gonokami (eds.), Terahertz Spectroscopy and Imaging (Springer 2013).

  2. J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kužel, C. Kadlec, P. Vaněk, I. Ponomareva, and L. Bellaiche, Phys. Rev. Lett. 101, 167402 (2008).

    Article  Google Scholar 

  3. A. Pimenov, A. A. Mukhin, V. Y. Ivanov, V. D. Travkin, A. M. Balbashov, and A. Loidl, Nat. Phys. 2, 97 (2006).

    Article  Google Scholar 

  4. N. Kida, Y. Takahashi, J. S. Lee, R. Shimano, Y. Yamasaki, Y. Kaneko, S. Miyahara, N. Furukawa, T. Arima, and Y. Tokura, J. Opt. Soc. Am. B 26, A35 (2009).

    Article  Google Scholar 

  5. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, Phys. Rev. B 62, 15764 (2000).

    Article  Google Scholar 

  6. H.-K. Nienhuys and V. Sundström, Appl. Phys. Lett. 87, 012101 (2005).

    Article  Google Scholar 

  7. P. Kužel and H. Němec, J. Phys. D – Appl. Phys. 47, 374005 (2014).

    Article  Google Scholar 

  8. M. Beck, I. Rousseau, M. Klammer, P. Leiderer, M. Mittendorff, S. Winnerl, M. Helm, G. N. Goltsman, and J. Demsar, Phys. Rev. Lett. 110, 267003 (2013).

    Article  Google Scholar 

  9. J. E. Boyd, A. Briskman. V. L. Colvin, and D. M. Mittleman, Phys. Rev. Lett 87, 147401 (2001).

    Article  Google Scholar 

  10. B. P. Gorshunov, V. I. Torgashev, E. S. Zhukova, V. G. Thomas, M. A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleška, P. V. Tomas, E. V. Pestrjakov, D. A. Fursenko, G. S. Shakurov, A. S. Prokhorov, V. S. Gorelik, L. S. Kadyrov, V. V. Uskov, R. K. Kremer, and M. Dressel, Nat. Commun. 7, 12842 (2016).

    Article  Google Scholar 

  11. R. Ulbricht, E. Hendry, J. Shan, T.F. Heinz, and M. Bonn, Rev. Mod. Phys. 83, 543 (2011).

    Article  Google Scholar 

  12. C. Kübler, R. Huber, S. Tübel, and A. Leitenstorfer, Appl. Phys. Lett. 85, 3360 (2004).

    Article  Google Scholar 

  13. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, J. Appl. Phys. 89, 2357 (2001).

    Article  Google Scholar 

  14. M. Naftaly and R. Dudley, Opt. Lett. 34, 1213 (2009).

    Article  Google Scholar 

  15. T. Wang, K. Iwaszczuk, E. A. Wrisberg, E. V. Denning, and P. Uhd Jepsen, J. Infrared Milli. Terahz. Waves 37, 592 (2016).

    Article  Google Scholar 

  16. P. Uhd Jepsen and B. M. Fischer, Opt. Lett. 30, 29 (2005).

    Article  Google Scholar 

  17. Note that in the case of TDS these n spectral values consist of n/2 real and n/2 imaginary values (or n/2 independent amplitude and phase values). In contrast, in the case of FTIR the phase does not bring any information about the sample: its values are implied by the symmetry of the interferogram and by electronic filtering of the signal. Information is then carried only by n/2 independent spectral power values.

  18. In most instruments, the acquisition involves blind intervals such as delay line return, during which no useful data are acquired. In order to keep our reasoning as simple as possible, we did not consider such intervals in the definitions of per-scan measurement time etc. Nevertheless, such intervals are automatically reflected in all subsequent formulae when we replace u by the scanning velocity defined as the ratio of nΔt to the total acquisition time needed for a single complete scan period (including the blind parts).

  19. J. S. Bendat and S. G. Piersol, Random Data analysis and Measurement Procedures (Wiley, 2000).

  20. P. Kužel, H. Němec, F. Kadlec, and C. Kadlec, Opt. Express 18, 15338 (2010).

    Article  Google Scholar 

  21. M. D. Thomson, M. Kress, T. Löffler, H. G. Roskos, Laser & Photon. Rev. 1, 349 (2007).

    Article  Google Scholar 

  22. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, Appl. Phys. Lett. 92, 011131 (2008).

    Article  Google Scholar 

  23. X. Lu and X.-C. Zhang, Appl. Phys. Lett. 98, 151111 (2011).

    Article  Google Scholar 

  24. It would be theoretically possible to increase the DR of the spectrometer equipped with the liquid He-cooled bolometer by inserting a filter into the beam path for a high-signal measurement (i.e. for any reference measurement) and remove it for a low-signal measurement (i.e.. for any sample measurement). However, this is quite problematic since, using this scheme, the reference would be always measured in different conditions than the sample and quantitative and reproducible determination of the spectra over a broad spectral range and without artifacts would be hardly achieved. This option is not used in practice and the devices are not equipped with such a possibility.

  25. S. Glinšek, D. Nuzhnyy, J. Petzelt, B. Malič, S. Kamba, V. Bovtun, M. Kempa, V. Skoromets, P. Kužel, I. Gregora, and M. Kosec, J. Appl. Phys. 111, 104101 (2012).

    Article  Google Scholar 

  26. C. Kadlec, F. Kadlec, H. Němec, P. Kužel, J. Schubert, and G. Panaitov, J. Phys.: Cond. Matter. 21, 115902 (2009).

    Google Scholar 

  27. K. L. Krewer, Z. Mics, J. Arabski, G. Schmerber, E. Beaurepaire, M. Bonn, and D. Turchinovich, Opt. Lett. 43, 447 (2018).

    Article  Google Scholar 

  28. F. Junginger, A. Sell, O. Schubert, B. Mayer, D. Brida, M. Marangoni, G. Cerullo, A. Leitenstorfer, and R. Huber, Opt. Lett. 35, 2465 (2010).

    Article  Google Scholar 

  29. T. Seifert et al., Nat. Photon. 10, 483 (2016).

    Article  Google Scholar 

  30. Y. C. Shen, P. C. Upadhya, E. H. Linfield, H. E. Beere, and A. G. Davies, App. Phys. Lett. 83, 3117 (2003).

    Article  Google Scholar 

Download references

Funding

This work is supported by the Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21- CZ.02.1.01/0.0/0.0/16_019/0000760). PK and HN also acknowledge the financial support by the Czech Science Foundation (Project No. 17-03662S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kužel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoromets, V., Němec, H., Goian, V. et al. Performance Comparison of Time-Domain Terahertz, Multi-terahertz, and Fourier Transform Infrared Spectroscopies. J Infrared Milli Terahz Waves 39, 1249–1263 (2018). https://doi.org/10.1007/s10762-018-0544-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0544-9

Keywords

Navigation