Skip to main content
Log in

Effect of Mode Transformation in THz Clinotron

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Extension of the theory of a clinotron is developed by use of the scattering matrix of an oversized T-junction on the ends of a slow wave system. The matrix contains elements corresponding to the transformation of slow grating modes into fast ones and vice versa. Those fast waves with low ohmic losses provide strong resonant properties of a clinotron even in the case of strong attenuation of the surface mode. Results of the theoretical simulation are compared with experimental ones and obtained dependencies explain strong resonances in sub-THz clinotrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.Gruner, “Millimeter and submillimeter wave spectroscopy of solids,” in Topics in Applied Physics, New York: Springer, 1998.

  2. G. A. Komandinet al., “BWO Generators for terahertz dielectric measurements,” IEEE Trans. on THz Sci., vol. 3, no. 4, pp. 440–444, July 2013, DOI. https://doi.org/10.1109/TTHZ.2013.2255914.

    Article  Google Scholar 

  3. G. Ya. Levin et al.,Clinotron, Kiev, Ukraine: NanukovaDumka, 1992. (in Russian) The Clinotron (in Russian), edited by A. Ya. Usikov (Naukova Dumka, Kiev, 1992).

  4. SchunemannK. and Vavriv D. M., “Theory of the clinotron: A grating backward-wave oscillator with inclined electron beam”, IEEE Trans. on Electron Devices, Vol. 46, Issue 11, pp. 2245–2252, 1999

    Article  Google Scholar 

  5. S. S. Ponomarenko et al., “400-GHz continuous-wave clinotron oscillator,” IEEE Trans. on Pl. Sci., vol. 41, no. 1, pp. 82–86, 2013, DOI. https://doi.org/10.1109/TPS.2012.2226247.

    Article  Google Scholar 

  6. Shuang Li, Jianguo Wang, Zaigao Chen, Guangqiang Wang, Dongyang Wang, and Yan Teng, “Study on the stability and reliability of Clinotron at Y-band”, Physics of Plasmas 24, 113108 (2017)

    Article  Google Scholar 

  7. Zaigao Chen and Yue Wang, “Development of a novel overmoded sub-terahertz inclined coaxial clinotron with asymmetric mode suppressed”, Physics of Plasmas 24, 103109 (2017)

    Article  Google Scholar 

  8. E. Khutoryanet al., “Theory of multimode resonant backward-wave oscillator with an inclined electron beam,” IEEE Trans. on El. Dev., vol. 62, no. 5, pp.1628–1634, 2015, DOI. https://doi.org/10.1109/TED.2015.2411680.

    Article  Google Scholar 

  9. Milcho, M. V., Yefimov, B. P., Zavertanniy, V. V. and Goncharov, V. V., Peculiar Properties of Operating Modes of Klynotron-Type Oscillators, Telecommunications and Radio Engineering, Vol. 65, 2006, Issue 6–10, pp. 719–730.

    Article  Google Scholar 

  10. B.P.Yefimov, G.Ya. Levin, “Multiwave Resonance BWT of Clinotron type MM-Radiowave Band”, Int. Journal of Infrared and Millimeter Waves, Vol. 18, Issue 11, pp.31–39, 1997.

  11. B. Levush, T. M. Antonsen, Jr., A. Bromborsky, W. R. Lou, and Y. Carmel, “Theory of relativistic backward-wave oscillators with end reflectors”, IEEE on Plasma Science, 20, 3 (1992).

    Article  Google Scholar 

  12. G. S. Nusinovich, Yu. P. Bliokh, “Mode interaction in backward-wave oscillators with strong end reflections”, Physics of Plasmas, 7, 4, 1294–1301, (2000)

    Article  Google Scholar 

  13. Andrushkevich, V. S., Gamayunov, Yu. G. and Patrusheva, Ye. V., 2011. Non-stationary theory of clinotron. Radiotekhnika i elektronika. 56(4), pp. 493–499 (in Russian).

  14. Y. S. Kovshov, S. S. Ponomarenko, S. A. Kishko, E. M. Khutoryan, A. N. Kuleshov, “Numerical Simulation and Experimental Study of Sub-THz and THz CW Clinotron Oscillators”, IEEE Transactions on Electron Devices, https://doi.org/10.1109/TED.2018.2792258

    Article  Google Scholar 

  15. A. A. Kirilenko, S. L. Senkevich, S. O. Steshenko, “Application of the generalized scattering matrix technique for the dispersion analysis of 3D slow-wave structures,” Telecommunications and Radio Engineering, vol.74, No 17, 2015, pp. 1497–1511, DOI: https://doi.org/10.1615/TelecomRadEng.v74.i17.10.

    Article  Google Scholar 

  16. S.O. Steshenko, S.A. Prikolotin, A.A. Kirilenko, D.Yu. Kulik, L.A. Rud, S.L. Senkevich, Partial domain technique considering field singularities in the internal problems with arbitrary piecewise-coordinate boundaries: Part 2. Plane-transverse junctions and "in-line" objects Telecommunications and Radio Engineering, vol.73, No 3, 2014, pp. 187–201.

  17. Rud’ L. A., “E-plane T-junction of oversize rectangular waveguides”, Radiophysics and Quantum Electronics. - February 1985, Volume 28, Issue 2, pp 146–151.

  18. E. M. Marshall, J. E. Walsh, E. J. Price, and J. A. Jackson, Int. J. Inf. Millimeter Waves, 11 (10), 1189–1224 (1990).

    Article  Google Scholar 

  19. Electronics of backward-wave tubes (in Russian), V. N. Shevchik and D. I. Trubezkov (Saratov University 1975).

  20. Yu. S. Kovshov, S. S. Ponomarenko, S. A. Kishko, A. A. Likhachev, S. A. Vlasenko, V. V. Zavertanniy,E. M. Khutoryan, A. N. Kuleshov, HIGH FREQUENCY OHMIC LOSSES IN TERAHERTZ FREQUENCY RANGE CW KLYNOTRONS, Telecommunications and Radio Engineering, Volume 76, 2017 Issue 10, pp. 929–940.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard M. Khutoryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovshov, Y.S., Ponomarenko, S.S., Kishko, S.S. et al. Effect of Mode Transformation in THz Clinotron. J Infrared Milli Terahz Waves 39, 1055–1064 (2018). https://doi.org/10.1007/s10762-018-0534-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0534-y

Keywords

Navigation