Skip to main content
Log in

Double-Layer Frequency Selective Surface for Terahertz Bandpass Filter

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A thin, low-cost, double-layer frequency-selective surface (FSS) bandpass filter has been designed, fabricated, and measured for operation in the terahertz band. The present FSS structure is composed of double-layer tin foil with a hexagonal lattice array of circular holes. A flat passband is observed with a 3-dB bandwidth of 0.20 THz from 0.81 to 1.01 THz, which is about 22% relative to the center frequency. This bandpass filter based on double-layer FSS structures achieved average insertion loss of 0.7-dB and 106.31-dB/THz band-edge steepness. We have found good agreement between theoretical calculations and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Yang, C. Gong, L. Sun, P. Chen, L. Lin, and W. Liu, Tunable reflecting terahertz filter based on chirped metamaterial structure, Scientific Reports, 6, 38732 (2016).

    Article  Google Scholar 

  2. H. Zhang, P. Guo, P. Chen, and S. Chang, Liquid-crystal-filled photonic crystal for terahertz switch and filter, J. Opt. Soc. Am. B, 26, 101–107 (2009).

    Article  Google Scholar 

  3. J. Li, Fast-tunable terahertz wave filter based on Kerr medium, Optics & Laser Technology, 56, 263–268, (2014).

    Article  Google Scholar 

  4. C. Winnewisser, F. Lewen, M. Schall, M. Walther, and H. Helm, Characterization and application of dichroic filters in the 0.1-3-THz region, IEEE Trans. Microwave Theory Tech., 48, 744–749 (2000).

    Article  Google Scholar 

  5. M. Kaliteevski, S. Brand, J. Cook, R. Abram, and J. Chamberlain, Terahertz filter based on refractive properties of metallic photonic crystal, Opt. Express, 16, 7330–7335 (2008).

    Article  Google Scholar 

  6. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. Basov, D. R. Smith, and S. Schultz, Terahertz plasmonic high pass filter, Appl. Phys. Lett., 83, 201 (2003).

    Article  Google Scholar 

  7. R. Wilk, N. Vieweg, O. Kopschinski, and M. Koch, Liquid crystal based electrically switchable Bragg structure for THz waves, Opt. Express, 17, 7377–7382 (2009).

    Article  Google Scholar 

  8. C. Chen, C. Pan, C. Hsieh, Y. Lin, and R. Pan, Liquid-crystal-based terahertz tunable Lyot filter, Appl. Phys. Lett., 88, 101107 (2006).

    Article  Google Scholar 

  9. I. Libon, S. Baumgärtner, M. Hempel, N. Hecker, J. Feldmann, M. Koch, and P. Dawson, An optically controllable terahertz filter, Appl. Phys. Lett., 76, 2821 (2000).

    Article  Google Scholar 

  10. S. Lo, and T. Murphy, Nanoporous silicon multilayers for terahertz filtering, Opt. Lett., 34, 2921–2923 (2009).

    Article  Google Scholar 

  11. R. Mendis, A. Nag, F. Chen, and D. M. Mittleman, A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides, Appl. Phys. Lett., 97, 131106 (2010).

    Article  Google Scholar 

  12. M. Lu, W. Li, and E. Brown, Second-order bandpass terahertz filter achieved by multilayer complementary metamaterial structures, Opt. Lett., 36(7), 1071–1073 (2011).

    Article  Google Scholar 

  13. A. Ebrahimi, S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, Second-order terahertz bandpass frequency selective surface with miniaturized elements, IEEE Trans. THz. Sci. Technol. 5(5), 761–769 (2015).

    Article  Google Scholar 

  14. S. Yang, S. Liu, S. Arezoomandan, A. Nahata, and B. Sensale-Rodriguez, Graphene-based tunable metamaterial terahertz filters, Appl. Phys. Lett. 105, 093105 (2014).

    Article  Google Scholar 

  15. M. Khodaee, M. Banakermani, and H. Baghban, GaN-based metamaterial terahertz bandpass filter design: tunability and ultra-broad passband attainment, Appl. Opt. 54(29), 8617–8624 (2015).

    Article  Google Scholar 

  16. W. C. Merrell, II S. Aslam, A. D. Brown, J. A. Chervenak, W. C. Huang, M. Quijada, and E. J. Wollack, Compact micromachined infrared bandpass filters for planetary spectroscopy. Appl Opt., 51, 3046–3053, (2012).

    Article  Google Scholar 

  17. F. H. Faisal, and J. Z. Kamiński, Floquet-Bloch theory of high-harmonic generation in periodic structures, Phys. Rev. A, 56, 748, (1997).

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the support from the National Natural Science Foundation of China (No.61379024) and National Quality Infrastructure Program of China (2016YFF0200306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jiu-Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ri-Hui, X., Jiu-Sheng, L. Double-Layer Frequency Selective Surface for Terahertz Bandpass Filter. J Infrared Milli Terahz Waves 39, 1039–1046 (2018). https://doi.org/10.1007/s10762-018-0527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0527-x

Keywords

Navigation