Advertisement

Terahertz Multivariate Spectral Analysis and Molecular Dynamics Simulations of Three Pyrethroid Pesticides

  • Fangfang Qu
  • Lei Lin
  • Yong He
  • Pengcheng Nie
  • Chengyong Cai
  • Tao Dong
  • Yi Pan
  • Yu Tang
  • Shaoming Luo
Article
  • 151 Downloads

Abstract

The terahertz (THz) multivariate spectral characteristics and the molecular dynamics of three pyrethroid pesticides, including deltamethrin, fenvalerate, and beta-cypermethrin, were studied in this paper. THz spectra of the pesticides were measured in frequency range of 0.06–3.5 THz by using THz time-domain spectroscopy (THz-TDS). To improve the THz spectral quality, the wavelet threshold de-noising (WTD) method was used to remove spectral noise and the spectral baseline correction (SBC) method was used to remove baseline drift. Specific absorption peaks were observed in the processed THz spectra of the three pesticides. Deltamethrin showed three peaks at 0.90, 1.49, and 2.32 THz. Fenvalerate had five peaks at 1.13, 1.43, 1.61, 1.98, and 2.58 THz. Beta cypermethrin had four peaks at 1.27, 1.84, 2.12, and 2.92 THz. The density functional theory (DFT) was used to characterize the molecular dynamics and formation mechanism of the absorption peaks. Results showed that there was a good matching effect between the THz experimental spectra and the DFT quantum calculation spectra. Based on the characterized fingerprint absorption peaks, the linear addition model was used to simulate the THz spectra of mixed pesticides. The simulated spectra of multicomponent pesticides were demonstrated to be in good agreement with those obtained by THz-TDS. By analyzing the absorption peaks of THz spectra, the composition and concentration of multicomponent pesticides could be determined. The proposed strategy presented an analytical methodology for studying the THz spectral characteristics of pesticides. In addition, this work provided experimental and theoretical basis for the detection potential of pesticides in agricultural products based on THz technology.

Keywords

Terahertz time-domain spectroscopy Wavelet threshold de-noising Spectral baseline correction Density functional theory Molecular dynamics simulations Multicomponent pesticides 

Notes

Acknowledgments

The authors acknowledge technical support and experimental guidance provided by Shenzhen Institute of Terahertz technology and Innovation.

Funding Information

The authors acknowledge the financial support of the National key point research and invention program of the thirteenth (2016YFD0700304) and National key research and development plan (2017YFD0700501).

References

  1. 1.
    European Food Safety Authority, Efsa Journal 12 (12), págs. 9 (2016).Google Scholar
  2. 2.
    W. Dong, X. Zhang, X. Zhang, H. Wu, M. Zhang, E. Ma, and J. Zhang, Pesticide Biochemistry & Physiology 132 (3), 47 (2016).Google Scholar
  3. 3.
    Z Xiaobo, H Xiaowei, and M Povey, The Analyst 141 (5), 1587 (2016).CrossRefGoogle Scholar
  4. 4.
    Fernando P Carvalho, Food & Energy Security 6 (2), 48 (2017).CrossRefGoogle Scholar
  5. 5.
    V Pashkov, O Batyhina, and M Trotska, Wiad Lek 70 (2 pt 2), 366 (2017).Google Scholar
  6. 6.
    A. H. Rajput, R. J. Uitti, W Stern, W Laverty, K O'Donnell, D O'Donnell, W. K. Yuen, and A Dua, Canadian Journal of Neurological Sciences Le Journal Canadien Des Sciences Neurologiques 14 (3 Suppl), 414 (2016).Google Scholar
  7. 7.
    Igor Kljujev, Vera Raicevic, Bojana Vujovic, Michael Rothballer, and Michael Schmid, Microbial Pathogenesis 115, 199 (2018).CrossRefGoogle Scholar
  8. 8.
    Yuefang Hua and Hongjian Zhang, IEEE Transactions on Microwave Theory & Techniques 58 (7), 2064 (2010).CrossRefGoogle Scholar
  9. 9.
    B. Jin, L. Xie, Y. Guo, and G. Pang, Food Res. Int. 46 (1), 399 (2012).CrossRefGoogle Scholar
  10. 10.
    Vijay Kumar, Niraj Upadhay, A. B. Wasit, and Simranjeet Singh, Current World Environment 8 (2), 313 (2013).Google Scholar
  11. 11.
    Chu Zhang, Hao Jiang, Fei Liu, and Yong He, Food & Bioprocess Technology 10 (1), 1 (2016).Google Scholar
  12. 12.
    H. Cen, H. Weng, J. Yao, M. He, J. Lv, S. Hua, H. Li, and Y. He, Frontiers in plant science 8, 1509 (2017).Google Scholar
  13. 13.
    W. Kong, C. Zhang, W. Huang, F. Liu, and Y. He, Sensors 18 (1), 123 (2018).CrossRefGoogle Scholar
  14. 14.
    Federica Bianchi, Nicolò Riboni, Valentina Trolla, Giada Furlan, Giorgio Avantaggiato, Giuliano Iacobellis, and Maria Careri, Talanta 154, 467 (2016).CrossRefGoogle Scholar
  15. 15.
    Yuqiang Deng, Qing Sun, Jing Yu, Nan Xu, Yandong Lin, and Division Of Optics, Chinese Journal of Lasers 44 (3), 0314001 (2017).CrossRefGoogle Scholar
  16. 16.
    Joonas Kokkoniemi, Janne Lehtomäki, and Markku Juntti, Nano Communication Networks 8, 35 (2016).CrossRefGoogle Scholar
  17. 17.
    P. F. Neumaier, K Schmalz, J Borngräber, R Wylde, and H. W. Hübers, The Analyst 140 (1), 213 (2015).CrossRefGoogle Scholar
  18. 18.
    P. Nie, F. Qu, L. Lin, T. Dong, Y. He, Y. Shao, and Y. Zhang, Sensors 17 (12), 2830 (2017).CrossRefGoogle Scholar
  19. 19.
    Fangfang Qu, Lei Lin, Chengyong Cai, Tao Dong, Yong He, and Pengcheng Nie, Appl. Sci. 8(3), 420 (2018).CrossRefGoogle Scholar
  20. 20.
    Mikhail Yu. Glyavin, Toshitaka Idehara, and Svilen P. Sabchevski, IEEE Transactions on Terahertz Science & Technology 5 (5), 788 (2015).CrossRefGoogle Scholar
  21. 21.
    Leamon Viveros, Weidong Zhang, and Elliott R. Brown, Sensors (1–4), (2013).Google Scholar
  22. 22.
    M Massaouti, C Daskalaki, A Gorodetsky, A. D. Koulouklidis, and S Tzortzakis, Appl. Spectrosc. 67 (11), 1264 (2013).CrossRefGoogle Scholar
  23. 23.
    I Maeng, S. H. Baek, H. Y. Kim, G. S. Ok, S. W. Choi, and H. S. Chun, J. Food Prot. 77 (12), 2081 (2014).CrossRefGoogle Scholar
  24. 24.
    Seung Hyun Baek, Hee Kang Ju, Yeun Hee Hwang, Min Ok Kang, Kyungwon Kwak, and Hyang Sook Chun, Journal of Infrared Millimeter & Terahertz Waves 37 (5), 486 (2016).CrossRefGoogle Scholar
  25. 25.
    F. Zhang, H. W. Wang, K Tominaga, M Hayashi, T Hasunuma, and A Kondo, Chemistry An Asian Journal 12 (3), 324 (2017).Google Scholar
  26. 26.
    Junliang Dong, Alexandre Locquet, and D. S. Citrin, Journal of Infrared Millimeter & Terahertz Waves 37 (3), 289 (2016).CrossRefGoogle Scholar
  27. 27.
    Nico Vieweg, Mehmet Ali Celik, Sabine Zakel, Vineet Gupta, Gernot Frenking, and Martin Koch, Journal of Infrared Millimeter & Terahertz Waves 35 (5), 478 (2014).CrossRefGoogle Scholar
  28. 28.
    Xuequan Chen, Edward P. J. Parrott, S. Y. Ung, and Emma Pickwell-Macpherson, IEEE Transactions on Terahertz Science & Technology 1 (99), (2017).Google Scholar
  29. 29.
    H Ito and T Ishibashi, Electron. Lett 56 (18), 1440 (2017).CrossRefGoogle Scholar
  30. 30.
    Rajesh Kumar, Amit Kumar, Vipin Deval, Archana Gupta, Poonam Tandon, P. S. Patil, Prathmesh Deshmukh, Deepika Chaturvedi, and J. G. Watve, J. Mol. Struct. 1129, 292 (2017).CrossRefGoogle Scholar
  31. 31.
    Arundhati Ray, B. Kartikeyan, and Sanjay Garg, International Journal of Computerences & Engineering 4 (10), 33 (2016).Google Scholar
  32. 32.
    Shailendra Kumar and Bhagat Singh, Soft Computing 1 (2), (2018).Google Scholar
  33. 33.
    Z. M. Zhang, S. Chen, and Y. Z. Liang, The Analyst 135 (5), 1138 (2010).CrossRefGoogle Scholar
  34. 34.
    Chao Pan, Ruifu Zhang, Hao Luo, and Hua Shen, Advances in Mechanical Engineering 8 (10), (2016).CrossRefGoogle Scholar
  35. 35.
    Alessandro Motta, And Giuseppe Lanza, Ignazio L. Fragalà, and Tobin J. Marks, Organometallics 23 (17), págs. 4097 (2016).Google Scholar
  36. 36.
    H Chermette, J. Comput. Chem. 20 (1), 129 (2015).CrossRefGoogle Scholar
  37. 37.
    Yehao Ma, Pingjie Huang, Dibo Hou, Jinhui Cai, Qiang Wang, and Guangxin Zhang, Chemometrics & Intelligent Laboratory Systems 150, 65 (2016).CrossRefGoogle Scholar
  38. 38.
    Xin Zhang, Shaohua Lu, Yi Liao, and Zhuoyong Zhang, Chemometrics & Intelligent Laboratory Systems 164, 8 (2017).CrossRefGoogle Scholar
  39. 39.
    Silva Vh Da, F. S. Vieira, J. J. Rohwedder, C Pasquini, and C. F. Pereira, The Analyst 142 (9) (2017).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Fangfang Qu
    • 1
    • 2
  • Lei Lin
    • 1
    • 2
  • Yong He
    • 1
    • 2
  • Pengcheng Nie
    • 1
    • 2
    • 3
  • Chengyong Cai
    • 1
    • 2
  • Tao Dong
    • 1
    • 2
  • Yi Pan
    • 4
  • Yu Tang
    • 5
  • Shaoming Luo
    • 5
  1. 1.College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
  2. 2.Key Laboratory of Spectroscopy Sensing, Ministry of AgricultureHangzhouPeople’s Republic of China
  3. 3.State Key Laboratory of Modern Optical InstrumentationZhejiang UniversityHangzhouChina
  4. 4.Laser Information Technology Research CenterHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenChina
  5. 5.College of AutomationZhongkai University of Agriculture and EngineeringGuangzhouChina

Personalised recommendations