Skip to main content
Log in

Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photoconductive Antenna Based on Optimized Plasmonic Nanostructures

Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Cite this article

Abstract

Herein, we numerically investigate terahertz photoconductive antennas (PCAs) based on optimized plasmonic nanostructures and absorption enhancement in nanocylinders. Plasmonic behavior in the visible to near-infrared light spectrum is achievable due to the metallic nanostructure employment. Herein, we study the absorption enhancement of silver and transparent-conducting oxides (TCO) nanocylinders with different diameters by means of effective medium approximation. This study also reports on the stronger enhancement in the case of TCO nanocylinders. The results show that resonant absorption amplitude and wavelength are dramatically affected by the thickness of the nanostructure as well as by the distances between nanocylinders. The outputs reported here provide a fertile ground for precise control of the nanowire structures for sensing and other enhanced optical applications. It is worthwhile noting that in case of TCO nanocylinders, absorption enhancement for NIR wavelengths, being relevant for present terahertz generation setup, reaches up to fivefold leading to 25-fold increase in terahertz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Opt. Express 11, 2549–2554 (2003).

    Article  Google Scholar 

  2. A. G. Davies, E. H. Linfield, M. B. Johnston, The development of terahertz sources and their applications, Phys. Med. Biol. 47, 3679e-3689 (2002).

    Article  Google Scholar 

  3. D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, H. G. Roskos, Diagnosing water content in paper by terahertz radiation, Opt. Express 16, 9060–9066 (2008).

    Article  Google Scholar 

  4. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications-explosives, weapons and drugs, Semicond. Sci. Technol. 20, S266-S280 (2005).

    Article  Google Scholar 

  5. J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, G. A. Mourou, Terahertz imaging for non-destructive evaluation of mural paintings, Opt. Commun. 281, 527–532 (2008).

    Article  Google Scholar 

  6. Y. V. Grachev, X. Liu, S. E. Putilin, A. N. Tsypkin, V. G. Bespalov, S. A. Kozlov, X.-C. Zhang, Wireless data transmission method using pulsed THz sliced spectral supercontinuum, IEEE Photonics Technology Letters 30(1), 103–106 (2018).

    Article  Google Scholar 

  7. M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, S. Tzortzakis, Detection of harmful residues in honey using terahertz time-domain spectroscopy, Applied Spectroscopy, 67(11), 1264–1269 (2013).

    Article  Google Scholar 

  8. P. U. Jepsen, R. H. Jacobsen, S. R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B 13, 2424 (1996).

    Article  Google Scholar 

  9. P. U. Jepsen, D. G. Cooke, M. Koch, Terahertz spectroscopy and imaging modern techniques and applications, Laser Phot. Rev. 5, 124–166 (2011).

    Article  Google Scholar 

  10. T. Gric, Surface-plasmon-polaritons at the interface of nanostructured metamaterials, Progress In Electromagnetics Research M 46, 165–172 (2016).

    Article  Google Scholar 

  11. T. Gric, M.S. Wartak, M. Cada, J.J. Wood, O. Hess & J. Pistora, Spoof plasmons in corrugated semiconductors, Journal of Electromagnetic Waves and Applications 29(14), 1899–1907 (2015).

    Article  Google Scholar 

  12. T. Gric, Spoof plasmons in corrugated transparent conducting oxides, Journal of Electromagnetic Waves and Applications 30(6), 721–727 (2016).

    Article  Google Scholar 

  13. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, N. J. Halas, Close encounters between two nanoshells, Nano Lett. 8, 1212–1218 (2008).

    Article  Google Scholar 

  14. P. K. Jain, M. A. El-Sayed, Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers, J. Phys. Chem. C 112, 4954–4960 (2008).

    Article  Google Scholar 

  15. H. Xu, J. Aizpurua, M. Ka¨ll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62, 4318–4324 (2000).

    Article  Google Scholar 

  16. B. Kanté, A. de Lustrac, J. Lourtioz, In-plane coupling and field enhancement in infrared metamaterial surfaces, Phys. Rev. B 80, 35108 (2009).

    Article  Google Scholar 

  17. W. Q. Hu, E. J. Liang, P. Ding, G. W. Cai, Q. Z. Xue, Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial, Opt. Express 17, 21843–21849 (2009).

    Article  Google Scholar 

  18. V. M. Shalaev, Optical negative-index metamaterials, Nat. Photonics 1, 41–48 (2007).

    Article  Google Scholar 

  19. C. M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths, Science 315, 47–49 (2007).

    Article  Google Scholar 

  20. J. B. Pendry, A. Holden, D. J. Robbins, W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).

    Article  Google Scholar 

  21. B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, N. P. Johnson, Asymmetric split ring resonators for optical sensing of organic materials, Opt. Express 17, 1107–1115 (2009).

    Article  Google Scholar 

  22. E.U. Rafailov, K. Fedorova, A. Gorodetsky, N. Bazieva, Recent progress in the development of quantum dot based devices in NIR and THz ranges SPIE Photonics West, San Francisco, 10111–97 (2017).

  23. M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. -H. Yang, M. Jarrahi, Switchable scattering meta-surfaces for broadband terahertz modulation, Sci. Rep. 4, 5708 (2014).

  24. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi, Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes, Nat. Commun. 4, 1622 (2013).

    Article  Google Scholar 

  25. R. Leyman, A. Gorodetsky, N. Bazieva, G. Molis, A. Krotkus, E. Clarke and E. U. Rafailov, Quantum dot materials for terahertz generation and applicationsLaser and Phot Review, 8, 1–8 (2016).

    Google Scholar 

  26. A. Al’u, N. Engheta, Wireless at the nanoscale: optical interconnects using matched nanoantennas, Phys. Rev. Lett. 104, 213902 (2010).

  27. D. Dietze, J. Darmo and K. Unterrainer, Guided Modes in Layered Semiconductor Terahertz Structures, IEEE Journal of Quantum Electronics 46(5), 618–625 (2010).

    Article  Google Scholar 

  28. G. V. Naik, V. M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver, Adv. Mater. 25, 3264–3294 (2013).

    Article  Google Scholar 

  29. A. Pokrovsky and A. Efros, Electrodynamics of metallic photonic crystals and the problem of left-handed materials, Phys. Rev. Lett. 89, 093901 (2002).

    Article  Google Scholar 

  30. G. Shvets, A. K. Sarychev, and V. M. Shalaev, Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits, Proc. SPIE 5218, 156 (2003).

    Article  Google Scholar 

  31. P. Belov, R. Marques, S. Maslovski, I. Nefedov, M. Silveirinha, C. Simovski, and S. Tretyakov, Strong spatial dispersion in wire media in the very large wavelength limit, Phys. Rev. B 67, 113103 (2003).

    Article  Google Scholar 

  32. A. L. Pokrovsky and A. L. Efros, Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals, Physical Review B 65, 045110 (2002).

  33. J. Elser, R. Wangberg, V. A. Podolskiy, Nanowire metamaterials with extreme optical anisotropy, Appl. Phys. Lett. 89, 261102 (2006).

    Article  Google Scholar 

  34. C. A. Balanis, Advanced engineering electromagnetics (Wiley, 1989).

  35. Z. Ruan and S. Fan, Superscattering of light from subwavelength nanostructures, Phys. Rev. Lett. 105, 013901 (2010).

    Article  Google Scholar 

  36. S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, P. Belov, Enhancement of terahertz photoconductive antenna operation by optical nanoantennas, Laser Photon. Rev. 11, 1600199 (2017)

    Article  Google Scholar 

  37. A. Al’u, N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Phys. Rev. Lett. 101, 043901 (2008).

  38. S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan P. Belov, A. Alú, E. U. Rafailov, Boosting the Terahertz photoconductive antenna performance with optimized plasmonic nanostructures, Scientific Reports 8, 6624 (2018).

    Article  Google Scholar 

  39. I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, Metallic photonic crystals at optical wavelengths, Phys. Rev. B 62, 15299–15302 (2000).

    Article  Google Scholar 

  40. C. W. Berry, M. Jarrahi, Principles of impedance matching in photoconductive antennas, Journal of Infrared, Millimeter, and Terahertz Waves, 33(12), 1182–1189 (2012).

    Article  Google Scholar 

  41. J. B. Khurgin, Replacing Noble Metals with Alternative Materials in Plasmonics and Metamaterials: how good an idea?, Philos Trans A Math Phys Eng Sci. 375(2090), 20160068 (2017).

    Article  Google Scholar 

  42. A. Alu, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72, 016623 (2005);

    Article  Google Scholar 

  43. A. Alu and N. Engheta, Multifrequency optical invisibility cloak with layered plasmonic shells, Phys. Rev. Lett. 100, 113901 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Gric.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gric, T., Gorodetsky, A., Trofimov, A. et al. Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photoconductive Antenna Based on Optimized Plasmonic Nanostructures. J Infrared Milli Terahz Waves 39, 1028–1038 (2018). https://doi.org/10.1007/s10762-018-0516-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0516-0

Keywords

Navigation