Abstract
Herein, we numerically investigate terahertz photoconductive antennas (PCAs) based on optimized plasmonic nanostructures and absorption enhancement in nanocylinders. Plasmonic behavior in the visible to near-infrared light spectrum is achievable due to the metallic nanostructure employment. Herein, we study the absorption enhancement of silver and transparent-conducting oxides (TCO) nanocylinders with different diameters by means of effective medium approximation. This study also reports on the stronger enhancement in the case of TCO nanocylinders. The results show that resonant absorption amplitude and wavelength are dramatically affected by the thickness of the nanostructure as well as by the distances between nanocylinders. The outputs reported here provide a fertile ground for precise control of the nanowire structures for sensing and other enhanced optical applications. It is worthwhile noting that in case of TCO nanocylinders, absorption enhancement for NIR wavelengths, being relevant for present terahertz generation setup, reaches up to fivefold leading to 25-fold increase in terahertz radiation.
This is a preview of subscription content,
to check access.







References
K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Opt. Express 11, 2549–2554 (2003).
A. G. Davies, E. H. Linfield, M. B. Johnston, The development of terahertz sources and their applications, Phys. Med. Biol. 47, 3679e-3689 (2002).
D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, H. G. Roskos, Diagnosing water content in paper by terahertz radiation, Opt. Express 16, 9060–9066 (2008).
J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, THz imaging and sensing for security applications-explosives, weapons and drugs, Semicond. Sci. Technol. 20, S266-S280 (2005).
J. B. Jackson, M. Mourou, J. F. Whitaker, I. N. Duling, S. L. Williamson, M. Menu, G. A. Mourou, Terahertz imaging for non-destructive evaluation of mural paintings, Opt. Commun. 281, 527–532 (2008).
Y. V. Grachev, X. Liu, S. E. Putilin, A. N. Tsypkin, V. G. Bespalov, S. A. Kozlov, X.-C. Zhang, Wireless data transmission method using pulsed THz sliced spectral supercontinuum, IEEE Photonics Technology Letters 30(1), 103–106 (2018).
M. Massaouti, C. Daskalaki, A. Gorodetsky, A. D. Koulouklidis, S. Tzortzakis, Detection of harmful residues in honey using terahertz time-domain spectroscopy, Applied Spectroscopy, 67(11), 1264–1269 (2013).
P. U. Jepsen, R. H. Jacobsen, S. R. Keiding, Generation and detection of terahertz pulses from biased semiconductor antennas, J. Opt. Soc. Am. B 13, 2424 (1996).
P. U. Jepsen, D. G. Cooke, M. Koch, Terahertz spectroscopy and imaging modern techniques and applications, Laser Phot. Rev. 5, 124–166 (2011).
T. Gric, Surface-plasmon-polaritons at the interface of nanostructured metamaterials, Progress In Electromagnetics Research M 46, 165–172 (2016).
T. Gric, M.S. Wartak, M. Cada, J.J. Wood, O. Hess & J. Pistora, Spoof plasmons in corrugated semiconductors, Journal of Electromagnetic Waves and Applications 29(14), 1899–1907 (2015).
T. Gric, Spoof plasmons in corrugated transparent conducting oxides, Journal of Electromagnetic Waves and Applications 30(6), 721–727 (2016).
J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, N. J. Halas, Close encounters between two nanoshells, Nano Lett. 8, 1212–1218 (2008).
P. K. Jain, M. A. El-Sayed, Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers, J. Phys. Chem. C 112, 4954–4960 (2008).
H. Xu, J. Aizpurua, M. Ka¨ll, P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Phys. Rev. E 62, 4318–4324 (2000).
B. Kanté, A. de Lustrac, J. Lourtioz, In-plane coupling and field enhancement in infrared metamaterial surfaces, Phys. Rev. B 80, 35108 (2009).
W. Q. Hu, E. J. Liang, P. Ding, G. W. Cai, Q. Z. Xue, Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial, Opt. Express 17, 21843–21849 (2009).
V. M. Shalaev, Optical negative-index metamaterials, Nat. Photonics 1, 41–48 (2007).
C. M. Soukoulis, S. Linden, M. Wegener, Negative refractive index at optical wavelengths, Science 315, 47–49 (2007).
J. B. Pendry, A. Holden, D. J. Robbins, W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Technol. 47, 2075–2084 (1999).
B. Lahiri, A. Z. Khokhar, R. M. De La Rue, S. G. McMeekin, N. P. Johnson, Asymmetric split ring resonators for optical sensing of organic materials, Opt. Express 17, 1107–1115 (2009).
E.U. Rafailov, K. Fedorova, A. Gorodetsky, N. Bazieva, Recent progress in the development of quantum dot based devices in NIR and THz ranges SPIE Photonics West, San Francisco, 10111–97 (2017).
M. Unlu, M. R. Hashemi, C. W. Berry, S. Li, S. -H. Yang, M. Jarrahi, Switchable scattering meta-surfaces for broadband terahertz modulation, Sci. Rep. 4, 5708 (2014).
C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi, Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes, Nat. Commun. 4, 1622 (2013).
R. Leyman, A. Gorodetsky, N. Bazieva, G. Molis, A. Krotkus, E. Clarke and E. U. Rafailov, Quantum dot materials for terahertz generation and applicationsLaser and Phot Review, 8, 1–8 (2016).
A. Al’u, N. Engheta, Wireless at the nanoscale: optical interconnects using matched nanoantennas, Phys. Rev. Lett. 104, 213902 (2010).
D. Dietze, J. Darmo and K. Unterrainer, Guided Modes in Layered Semiconductor Terahertz Structures, IEEE Journal of Quantum Electronics 46(5), 618–625 (2010).
G. V. Naik, V. M. Shalaev, A. Boltasseva, Alternative plasmonic materials: beyond gold and silver, Adv. Mater. 25, 3264–3294 (2013).
A. Pokrovsky and A. Efros, Electrodynamics of metallic photonic crystals and the problem of left-handed materials, Phys. Rev. Lett. 89, 093901 (2002).
G. Shvets, A. K. Sarychev, and V. M. Shalaev, Electromagnetic properties of three-dimensional wire arrays: photons, plasmons, and equivalent circuits, Proc. SPIE 5218, 156 (2003).
P. Belov, R. Marques, S. Maslovski, I. Nefedov, M. Silveirinha, C. Simovski, and S. Tretyakov, Strong spatial dispersion in wire media in the very large wavelength limit, Phys. Rev. B 67, 113103 (2003).
A. L. Pokrovsky and A. L. Efros, Nonlocal electrodynamics of two-dimensional wire mesh photonic crystals, Physical Review B 65, 045110 (2002).
J. Elser, R. Wangberg, V. A. Podolskiy, Nanowire metamaterials with extreme optical anisotropy, Appl. Phys. Lett. 89, 261102 (2006).
C. A. Balanis, Advanced engineering electromagnetics (Wiley, 1989).
Z. Ruan and S. Fan, Superscattering of light from subwavelength nanostructures, Phys. Rev. Lett. 105, 013901 (2010).
S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, P. Belov, Enhancement of terahertz photoconductive antenna operation by optical nanoantennas, Laser Photon. Rev. 11, 1600199 (2017)
A. Al’u, N. Engheta, Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas, Phys. Rev. Lett. 101, 043901 (2008).
S. Lepeshov, A. Gorodetsky, A. Krasnok, N. Toropov, T. A. Vartanyan P. Belov, A. Alú, E. U. Rafailov, Boosting the Terahertz photoconductive antenna performance with optimized plasmonic nanostructures, Scientific Reports 8, 6624 (2018).
I. El-Kady, M. M. Sigalas, R. Biswas, K. M. Ho, C. M. Soukoulis, Metallic photonic crystals at optical wavelengths, Phys. Rev. B 62, 15299–15302 (2000).
C. W. Berry, M. Jarrahi, Principles of impedance matching in photoconductive antennas, Journal of Infrared, Millimeter, and Terahertz Waves, 33(12), 1182–1189 (2012).
J. B. Khurgin, Replacing Noble Metals with Alternative Materials in Plasmonics and Metamaterials: how good an idea?, Philos Trans A Math Phys Eng Sci. 375(2090), 20160068 (2017).
A. Alu, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings, Phys. Rev. E 72, 016623 (2005);
A. Alu and N. Engheta, Multifrequency optical invisibility cloak with layered plasmonic shells, Phys. Rev. Lett. 100, 113901 (2008).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gric, T., Gorodetsky, A., Trofimov, A. et al. Tunable Plasmonic Properties and Absorption Enhancement in Terahertz Photoconductive Antenna Based on Optimized Plasmonic Nanostructures. J Infrared Milli Terahz Waves 39, 1028–1038 (2018). https://doi.org/10.1007/s10762-018-0516-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10762-018-0516-0