Tuning of Terahertz Resonances of Pyridyl Benzamide Derivatives by Electronegative Atom Substitution

  • Jyotirmayee Dash
  • Shaumik Ray
  • Nirmala Devi
  • Nitin Basutkar
  • Rajesh G. Gonnade
  • Ashootosh V. Ambade
  • Bala Pesala


N-(pyridin-2-yl) benzamide (Ph2AP)-based organic molecules with prominent terahertz (THz) signatures (less than 5 THz) have been synthesized. The THz resonances are tuned by substituting the most electronegative atom, fluorine, at ortho (2F-Ph2AP), meta (3F-Ph2AP), and para (4F-Ph2AP) positions in a Ph2AP molecule. Substitution of fluorine helps in varying the charge distribution of the atoms forming hydrogen bond and hence strength of the hydrogen bond is varied which helps in tuning the THz resonances. The tuning of lower THz resonances of 2F-Ph2AP, 3F-Ph2AP, and 4F-Ph2AP has been explained in terms of compliance constant (relaxed force constant). Four-molecule cluster simulations have been carried out using Gaussian09 software to calculate the compliance constant of the hydrogen bonds. Crystal structure simulations of the above molecules using CRYSTAL14 software have been carried out to understand the origin of THz resonances. It has been observed that THz resonances are shifted to higher frequencies with stronger hydrogen bonds. The study shows that 3F-Ph2AP and 4F-Ph2AP have higher hydrogen bond strength and hence the THz resonances originating due to stretching of intermolecular hydrogen bonds have been shifted to higher frequencies compared to 2F-Ph2AP. The methodology presented here will help in designing novel organic molecules by substituting various electronegative atoms in order to achieve prominent THz resonances.


Terahertz spectroscopy Ph2AP molecule Density functional theory Compliance constant 


Funding Information

The authors received financial support for this work through CSIR network project CSC-0128 (FUTURE). Co-author Shaumik Ray received financial support from CSIR-Senior Research Fellowship.


  1. 1.
    M. Amalanathan, I. H. Joe, S. S. Prabhu, "Charge Transfer Interaction and Terahertz Studies of a Nonlinear Optical Material l-Glutamine Picrate: A DFT Study," J. Phys. Chem.A 114, 13055–13064 (2010).CrossRefGoogle Scholar
  2. 2.
    P. M. Hakey, D. G. Allis, M. R. Hudson, W. Ouellette, T. M. Korter, "Investigation of (1R,2S)-(−)-Ephedrine by Cryogenic Terahertz Spectroscopy and Solid-State Density Functional Theory," ChemPhysChem 10, 2434–2444 (2009).CrossRefGoogle Scholar
  3. 3.
    P. U. Jepsen, S. J. Clark, "Precise ab-initio prediction of terahertz vibrational modes in crystalline systems," Chem. Phys. Lett. 442, 275–280 (2007).CrossRefGoogle Scholar
  4. 4.
    M. Walther, B. Fischer, M. Schall, H. Helm, P. U. Jepsen, "Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy," Chem. Phys. Lett. 332, 389–395 (2000).CrossRefGoogle Scholar
  5. 5.
    A. G. Markelz, A. Roitberg, E. J. Heilweil, "Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz," Chem. Phys. Lett. 320, 42–48 (2000).CrossRefGoogle Scholar
  6. 6.
    Lu. Meihong, S. Jingling, Li. Ning, Y. Zhang, C. Zhang, L. Liang, X. Xiaoyu, "Detection and identification of illicit drugs using terahertz imaging," J. Appl. Phys.. 100, 103104 (2006).CrossRefGoogle Scholar
  7. 7.
    M. R. Leahy-Hoppa, M. J. Fitch, and R. Osiander, "Terahertz spectroscopy techniques for explosives detection," Anal. Bioanal. Chem. 395, 247–257 (2009).CrossRefGoogle Scholar
  8. 8.
    P. F. Taday, I. V. Bradley, D. D. Arnone, and M. Pepper, "Using Terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride," J. Pharm. Sci. 92, 831–838 (2003).CrossRefGoogle Scholar
  9. 9.
    M. Takahashi, "Terahertz Vibrations and Hydrogen-Bonded Networks in Crystals," Crystals 4, 74 (2014).CrossRefGoogle Scholar
  10. 10.
    M. D. King, W. Ouellette, T. M. Korter, "Noncovalent Interactions in Paired DNA Nucleobases Investigated by Terahertz Spectroscopy and Solid-State Density Functional Theory," J. Phys. Chem. A 115, 9467–9478 (2011).CrossRefGoogle Scholar
  11. 11.
    Y. Jiang, F. Zhou, X. Wen, L. Yang, G. Zhao, H. Wang, H. Wang, Y. Zhai, J. Wu, K. Liu, J. E. Chen, "Terahertz Absorption Spectroscopy of Benzamide, Acrylamide, Caprolactam, Salicylamide, and Sulfanilamide in the Solid State," J. Spectrosc. (London, U. K.), 9 (2014).Google Scholar
  12. 12.
    O. Kambara, J. C. S. Ponseca, K. Tominaga, J.-i. Nishizawa, T. Sasaki, H.-W. Wang, M. Hayashi, "Vibrational Mode Assignment in the Terahertz Frequency Region by Isotope Shift: Anthracene in Solid State," Bull. Chem. Soc. Jpn 86, 714–720 (2013).CrossRefGoogle Scholar
  13. 13.
    M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, M. Hangyo, "Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition," Appl. Phys. Lett. 86, 053903 (2005).CrossRefGoogle Scholar
  14. 14.
    K. Siegrist, C. R. Bucher, I. Mandelbaum, A. R. Hight Walker, R. Balu, S. K. Gregurick, D. F. Plusquellic, "High-Resolution Terahertz Spectroscopy of Crystalline Trialanine: Extreme Sensitivity to β-Sheet Structure and Cocrystallized Water," J. Am. Chem. Soc. 128, 5764–5775 (2006).CrossRefGoogle Scholar
  15. 15.
    A. Markelz, S. Whitmire, J. Hillebrecht, R. Birge, "THz time domain spectroscopy of biomolecular conformational modes," Phys. Med. Biol. 47, 3797–3805 (2002).CrossRefGoogle Scholar
  16. 16.
    J. Dash, S. Ray, K. Nallappan, V. V. Kaware, N. Basutkar, R. G. Gonnade, A. V. Ambade, K. Joshi, and B. Pesala, "Terahertz Spectroscopy and Solid-State Density Functional Theory Calculations of Cyanobenzaldehyde Isomers," J. Phys. Chem. A 119, 7991–7999 (2015).CrossRefGoogle Scholar
  17. 17.
    A. V. Ambade, N. B. Basutkar, B. Pesala, K. Joshi, V. V. Kaware, S. Ray, and J. Dash, "Organic molecules for terahertz tagging applications", WO/2015/104722, (2015).Google Scholar
  18. 18.
    T. Kleine-Ostmann, R. Wilk, F. Rutz, M. Koch, H. Niemann, B. Güttler, K. Brandhorst, J. Grunenberg, "Probing Noncovalent Interactions in Biomolecular Crystals with Terahertz Spectroscopy," ChemPhysChem 9, 544–547 (2008).CrossRefGoogle Scholar
  19. 19.
    K. Brandhorst, J. Grunenberg, "How strong is it? The interpretation of force and compliance constants as bond strength descriptors," Chem. Soc. Rev. 37, 1558–1567 (2008).CrossRefGoogle Scholar
  20. 20.
    S. APEX2, and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, Bruker, 2006.Google Scholar
  21. 21.
    G. Sheldrick, "A short history of SHELX," Acta Crystallogr., Sect. A: Found. Adv. 64, 112–122 (2008).CrossRefzbMATHGoogle Scholar
  22. 22.
    P.Mocilac, K. Donnelly, J. F.Gallagher "Experimental Crystal Structure Determination," CCDC 865580 (2014),
  23. 23.
    P.Mocilac, K. Donnelly, J. F.Gallagher "Experimental Crystal Structure Determination," CCDC 865579 (2014),
  24. 24.
    P. Mocilac, K. Donnelly, J. F. Gallagher, "Structural systematics and conformational analyses of a 3 ×3 isomer grid of fluoro-N-(pyridyl)benzamides: physicochemical correlations, polymorphism and isomorphous relationships" Acta Crystallogr. Sect. B: Struct. Sci., Cryst. Eng. 68, 189–203 (2012).CrossRefGoogle Scholar
  25. 25.
    C. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, "The Cambridge Structural Database," Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 72, 171–179 (2016).CrossRefGoogle Scholar
  26. 26.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford CT, (2009).Google Scholar
  27. 27.
    B. Fischer, M. Hoffmann, H. Helm, G. Modjesch, and P. U. Jepsen, "Chemical recognition in terahertz time-domain spectroscopy and imaging," Semicond. Sci. Technol. 20, S246 (2005).CrossRefGoogle Scholar
  28. 28.
    R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, De La Pierre, P. D Arco, Y. Noel, M. Causa, M. Rerat, B. Kirtman, Int. J. Quantum Chem. 114, 1287 (2014).CrossRefGoogle Scholar
  29. 29.
    R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà, Y. Noël, "CRYSTAL14 User's Manual," University of Torino: Torino, (2014).Google Scholar
  30. 30.
    P. Canepa, R. M. Hanson, P. Ugliengo, and M. Alfredsson, "J-ICE: a new Jmol interface for handling and visualizing crystallographic and electronic properties," J. Appl. Crystallogr. 44, 225–229 (2011).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Jyotirmayee Dash
    • 1
    • 2
  • Shaumik Ray
    • 1
    • 2
  • Nirmala Devi
    • 1
    • 2
  • Nitin Basutkar
    • 3
  • Rajesh G. Gonnade
    • 3
  • Ashootosh V. Ambade
    • 2
    • 3
  • Bala Pesala
    • 1
    • 2
  1. 1.Council of Scientific and Industrial Research (CSIR)Central Electronics Engineering Research Institute (CEERI)ChennaiIndia
  2. 2.Academy of Scientific and Innovative ResearchChennaiIndia
  3. 3.Council of Scientific and Industrial Research (CSIR)National Chemical Laboratory (NCL)PuneIndia

Personalised recommendations