Improvement of Mode Selectivity of High-Harmonic Gyrotrons by Using Operating Cavities with Short Output Reflectors

Article
  • 19 Downloads

Abstract

An important problem in realization of gyrotrons operating at high cyclotron harmonics is discrimination of parasitic oscillations excited at lower harmonics. In this paper, we propose to use an operating cavity with a short output irregularity providing a partial reflection of the operating wave. This allows decreasing the length of the cavity with no considerable change in both the operating electron current and the efficiency of the gyrotron operation. At the same time, since the output irregularity weakly reflects parasitic low-frequency waves, the reduction in the length of the cavity leads to a significant increase in the starting currents of the parasitic near-cutoff waves.

Keywords

THz radiation Gyrotron High cyclotron harmonics Mode selection 

References

  1. 1.
    A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, Radiophys. Quantum Electron. 10, 794 (1967).CrossRefGoogle Scholar
  2. 2.
    G. S. Nusinovich, Introduction to the Physics of Gyrotrons. Baltimore: The Johns Hopkins Univ. Press, 2004.Google Scholar
  3. 3.
    W. H. Urbanus, W. A. Bongers, C. A. J. Van Der Geer, P. Manintveld, J. Plomp, J. Pluygers, A. J. Poelman, P. H. M. Smeets, A. G. A. Verhoeven, V. L. Bratman, G. G. Denisov, A. V. Savilov, M. Yu. Shmelyov, M. Caplan, A. A. Varfolomeev, S. V. Tolmachev, and S. N. Ivanchenkov, Phys. Rev. E 59, 6058 (1999).CrossRefGoogle Scholar
  4. 4.
    N. A. Vinokurov, J. Infrared, Millimeter THz Waves 32, 1123 (2011).CrossRefGoogle Scholar
  5. 5.
    V. L. Bratman, I. V. Bandurkin, B. S. Dumesh, A. E. Fedotov, Yu. K. Kalynov, N. G. Kolganov, V. N. Manuilov, F. S. Rusin, S. V. Samsonov, and A. V. Savilov, AIP Conf. Proc. 807, 356 (2006).CrossRefGoogle Scholar
  6. 6.
    T. Idehara, H. Tsuchiya, O. Watanabe, L. Agusu, and S. Mitsudo, Int. J. of Infrared and Millimeter Waves 27, 319 (2006).CrossRefGoogle Scholar
  7. 7.
    M. K. Hornstein, V. S. Bajaj, R. G. Griffin, and R. J. Temkin, IEEE Trans. Plasma Sci. 34, 524 (2006).CrossRefGoogle Scholar
  8. 8.
    T. Saito, T. Nakano, H. Hoshizuki, K. Sakai, Y. Tatematsu, S. Mitsudo, I. Ogawa, T. Idehara, V.E. Zapevalov, Int. J. of Infrared and Millimeter Waves, 28, 1063 (2007).CrossRefGoogle Scholar
  9. 9.
    M. Y. Glyavin, A. G. Luchinin, and G. Y. Golubiatnikov, Phys. Rev. Lett. 100, 015101 (2008).CrossRefGoogle Scholar
  10. 10.
    V. L. Bratman, M. Yu. Glyavin, Yu. K. Kalynov, A. G. Litvak, A. G. Luchinin, A. V. Savilov, and V. E. Zapevalov, J. Infrared Millimeter THz Waves 32, 371 (2011).CrossRefGoogle Scholar
  11. 11.
    A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, IEEE Trans. Electron Dev. 58, 2777 (2011).CrossRefGoogle Scholar
  12. 12.
    T. Idehara and S. P. Sabchevski, J. Infrared Millimeter THz Waves 33, 667 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, and R. Pu, Appl. Phys. Lett. 101, 153503 (2012).CrossRefGoogle Scholar
  14. 14.
    S. Alberti, J.-Ph. Ansermet, K. A. Avramides, F. Braunmueller, P. Cuanillon, J. Dubray, D. Fasel, J.-Ph. Hogge, A. Macor, E. de Rijk, M. da Silva, M. Q. Tran, T. M. Tran, and Q. Vuillemin, Phys. Plasmas 19, 123102 (2012).CrossRefGoogle Scholar
  15. 15.
    V. L. Bratman, Y. K. Kalynov, and V. N. Manuilov, Phys. Rev. Lett. 102, 245101 (2009).CrossRefGoogle Scholar
  16. 16.
    I. V. Bandurkin, Y. K. Kalynov, and A. V. Savilov, IEEE Trans. Electron Devices 62, 2356 (2015).CrossRefGoogle Scholar
  17. 17.
    H. Jory, “Investigation of electronic interaction with optical resonators for microwave generation and amplification,” Varian Associates, Palo Alto, CA, USA, R&D Tech. Rep. ECOM-01873-F, 1968.Google Scholar
  18. 18.
    D. B. McDermott, N. C. Luhmann, Jr., A. Kupiszewski, and H. R. Jory, Phys. Fluids 26, 1936 (1983).Google Scholar
  19. 19.
    K. Irwin, W. W. Destler, W. Lawson, J. Rodgers, E. P. Scannell, and S. T. Spang, J. Appl. Phys. 69, 627 (1991).CrossRefGoogle Scholar
  20. 20.
    V. L. Bratman, A. E. Fedotov, Y. K. Kalynov, V. N. Manuilov, M. M. Ofitserov, S. V. Samsonov, and A. V. Savilov, IEEE Trans. Plasma Sci. 27, 456 (1999).CrossRefGoogle Scholar
  21. 21.
    V. Zapevalov, T. Idehara, S. Sabchevski, K. Ohashi, V. Manuilov et al, Int. J. of Infrared and Millimeter Waves 24, 253 (2003).CrossRefGoogle Scholar
  22. 22.
    V. E. Zapevalov, V. N. Manuilov, and Sh. E. Tsimring, Radiophys. Quant. Electron. 34, 174 (1991).CrossRefGoogle Scholar
  23. 23.
    Sh. Liu, X. Yuan, W. Fu, Y. Yan, Y. Zhang, H. Li, and R. Zhong, Phys. Plasmas 14, 103113 (2007).CrossRefGoogle Scholar
  24. 24.
    M. Glyavin, V. Manuilov, and T. Idehara, Phys. Plasmas 20, 123303 (2013).CrossRefGoogle Scholar
  25. 25.
    A.V. Savilov, V. L. Bratman, A.D.R. Phelps, and S.V. Samsonov, Physical Review E 62, 4207 (2000).CrossRefGoogle Scholar
  26. 26.
    V. L. Bratman, A. E. Fedotov, N. G. Kolganov, S.V. Samsonov, and A.V. Savilov. Phys. Rev. Lett 85, 3424 (2000).CrossRefGoogle Scholar
  27. 27.
    I.V. Bandurkin, V.L. Bratman, A.V. Savilov, S.V. Samsonov, A.B. Volkov, Physics of Plasmas 16, 070701 (2009).CrossRefGoogle Scholar
  28. 28.
    A. V. Savilov and G. S. Nusinovich, Phys. Plasmas 14, 053113 (2007).CrossRefGoogle Scholar
  29. 29.
    V. E. Zapevalov, S. A. Malygin, V. G. Pavelyev, and Sh. E. Tsimring, Radiophys. Quant. Electron. 27, 846 (1984).CrossRefGoogle Scholar
  30. 30.
    I. V. Bandurkin, Yu. K. Kalynov, and A. V. Savilov, Phys. Plasmas 17, 073101 (2010).CrossRefGoogle Scholar
  31. 31.
    V. I. Belousov, S. N. Vlasov, N. A. Zavolsky, V. E. Zapevalov, E. V. Koposova, S. Yu. Kornishin, A. N. Kuftin, M. A. Moiseev, and V. I. Khizhnyak, Radiophys. Quant. Electron. 57, 446 (2014).CrossRefGoogle Scholar
  32. 32.
    Y. K. Kalynov, I. V. Osharin, and A. V. Savilov, Phys. Plasmas 23, 053116 (2016).CrossRefGoogle Scholar
  33. 33.
    I.V. Bandurkin, M.Y. Glyavin, S.V. Kuzikov, P.B. Makhalov, I.V. Osharin, A.V.Savilov, IEEE Transactions on Electron Devices 64, 3893 (2017).CrossRefGoogle Scholar
  34. 34.
    Wagner, D., G. Gantenbein, W. Kasparek, M. Thumm. Int. J. Infrared and Millimeter Waves, 16, 1481–1489 (1995).CrossRefGoogle Scholar
  35. 35.
    Wagner, D., G. Gantenbein, W. Kasparek, J. Pretterebner, M. Thumm. Conf. Digest 19th Int. Conf. on Infrared and Millimeter Waves, Sendai, Japan, 1994, Contributed Paper W1.7, JSAP Catalog Number: AP941228, pp. 289–290.Google Scholar
  36. 36.
    V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, Opt. Commun. 30, 409 (1979).CrossRefGoogle Scholar
  37. 37.
    M. Yu. Glyavin, Yu. S. Oparina, A. V. Savilov, and A. S. Sedov, Physics of Plasmas 23, 093108 (2016).CrossRefGoogle Scholar
  38. 38.
    G. S. Nusinovich and O. Dumbrajs, J. Infr. Millim. Terahertz Waves vol. 37, 111( 2016).Google Scholar
  39. 39.
    I.V. Bandurkin, Y.K. Kalynov, P.B. Makhalov, I.V. Osharin, A.V. Savilov, I.V. Zheleznov, IEEE Transactions on Electron Devices 64, 300 (2017).CrossRefGoogle Scholar
  40. 40.
    I. V. Bandurkin and A. V. Savilov, Phys. Plasmas 22, 063113 (2015)CrossRefGoogle Scholar
  41. 41.
    N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron. 61, 881 (1986).Google Scholar
  42. 42.
    V. L. Bratman, A. V. Savilov, and T.H. Chang, Radiophys. Quantum Electron., 58, No. 9, 660 (2015).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations