THz Induced Nonlinear Effects in Materials at Intensities above 26 GW/cm2

  • A. Woldegeorgis
  • T. Kurihara
  • B. Beleites
  • J. Bossert
  • R. Grosse
  • G. G. Paulus
  • F. Ronneberger
  • A. Gopal
Article
  • 37 Downloads

Abstract

Nonlinear refractive index and absorption coefficient are measured for common semiconductor material such as silicon and organic molecule such as lactose in the terahertz (THz) spectral regime extending from 0.1 to 3 THz. Terahertz pulses with field strengths in excess of 4.4 MV/cm have been employed. Transmittance and the transmitted spectrum were measured with Z-scan and single shot noncollinear electro-optic pump-probe techniques. The THz-induced change in the refractive index (Δn) shows frequency-dependence and a maximum change of \(-~0.128\) at 1.37 THz in lactose and up to \(+~0.169\) at 0.15 THz in silicon was measured for a peak incident THz intensity of 26 GW/cm2. Furthermore, the refractive index variation shows a quadratic dependence on the incident THz field, implying the dominance of third-order nonlinearity.

Keywords

Nonlinear terahertz optics Material characterization Electro-optic detection Nonlinear refractive index 

Notes

Acknowledgements

The authors greatly acknowledge the technical support from Dr. Ingo Uschmann and Heike Marschner for the successful experimental campaign.

Funding Information

AG acknowledge the financial support from DFG through grant no. GO 1998/3-1. T.K. is thankful for the support from Japan Society for the Promotion of Science (Postdoctoral Fellowship for Research Abroad).

References

  1. 1.
    M. Tonouchi, Cutting-edge terahertz technology. Nature Photon. 1, 97 (2007).Google Scholar
  2. 2.
    R. Boyd, Nonlinear Optics, Academic Press, 2008.Google Scholar
  3. 3.
    P. A Franken, A. E. Hill, C. W. Peters and G. Weinreich, High sensitivity, single-beam \(n_{2}\) measurements, Phys. Rev. Lett. 7, 118 (1961).Google Scholar
  4. 4.
    Y-S. Lee, Principles of Terahertz Science and Technology, Springer, 2009.Google Scholar
  5. 5.
    M. C. Hoffmann and D. Turchinovich, Semiconductor saturable absorbers for ultrafast terahertz signals, Appl. Phys. Lett. 96, 151110 (2010).Google Scholar
  6. 6.
    M. C. Hoffmann and J. A. Fülöp, Intense ultrashort terahertz pulses: generation and applications, J. Phys. D: Appl. Phys. 44, 083001 (2011).Google Scholar
  7. 7.
    M. C. Hoffmann, J. Hebling, H. Y. Hwang, Ka-Lo Yeh and K. A. Nelson, THz-pump/THz-probe spectroscopy of semiconductors at high field strengths, J. Opt. Soc. Am. B 26, A29 (2009).Google Scholar
  8. 8.
    P. U. Jepsen, D. G. Cooke and M. Koch, Terahertz spectroscopy and imaging- Modern techniques and applications, Laser Photonics Rev. 5, 1, 124 (2011).Google Scholar
  9. 9.
    A. Leitenstorfer, K.A. Nelson, K. Reimann and K. Tanaka,Focus on nonlinear terahertz studies, New Journal of Physics 16, 045016 (2014) and references therein.Google Scholar
  10. 10.
    T. C. Dorney, R. G. Baraniuk and D. M. Mittelman, Material parameter estimation with terahertz time-domain spectroscopy, J. Opt. Soc. Am. A 18, 1562 (2001).Google Scholar
  11. 11.
    P. Kŭzel, H. Nĕmec, F. Kadlec and C. Kadlec, Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy, Opt. Exp. 18, 15338 (2010).Google Scholar
  12. 12.
    N. Kanda, K. Konishi and M. Kuwata-Gonokami, Light-induced terahertz optical activity, Opt. Lett. 34, 3000 (2009).Google Scholar
  13. 13.
    Y.Shen, G. L. Carr, J. B. Murphy, T. Y. Tsang, X. Wang and Xi Yang, Electro-optic time lensing with an intense single-cycle terahertz pulse, Phys. Rev. A 81, 053835 (2010).Google Scholar
  14. 14.
    O. Schubert, C. Riek, F. Junginger, A. Sell, A. Leitenstorfer and R. Huber, Ultrashort pulse characterization with a terahertz streak camera, Opt. Lett. 36, 4458 (2011).Google Scholar
  15. 15.
    M. Zalkovskij, A. C. Strikwerda, K. Iwaszczuk, A. Popescu, D. Savastru, R. Malureanu, A. V. Lavrinenko and P. U. Jepsen, Terahertz-induced Kerr effect in amorphous chalcogenide glasses, Appl. Phys. Lett. 103, 221102 (2013).Google Scholar
  16. 16.
    D. Turchinovich, J. M. Hvam and M. C. Hoffmann, Self-phase modulation of a single-cycle terahertz pulse by nonlinear free-carrier response in a semiconductor, Phys. Rev. B 85, 201304(R) (2012).Google Scholar
  17. 17.
    Y. Shen, T. Watanabe, D. A. Arena, C.-C. Kao, J. B. Murphy, T.Y. Tsang, X. J. Wang and G. L. Carr, Nonlinear Cross-Phase Modulation with Intense Single-Cycle Terahertz Pulses, Phys. Rev. Lett. 99, 043901 (2007).Google Scholar
  18. 18.
    S. Mondal, H. A. Hafez, X. Ropagnol and T. Ozaki, MV/cm terahertz pulses from relativistic laser plasma interaction characterized by nonlinear terahertz absorption bleaching in n -doped InGaAs, Opt. Exp., 25, 17511 (2017).Google Scholar
  19. 19.
    O.V. Chefonov, A. V. Ovchinnikov, S. A. Romashevskiy, X. Chai, T. Ozaki, A. B. Savel’ev, M. B. Agranat and V. E. Fortov, Giant self-induced transparency of intense few-cycle terahertz pulses in n-doped silicon, Opt.Lett. 42, 4889 (2017).Google Scholar
  20. 20.
    M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, High sensitivity, single-beam \(n_{2}\) measurements, Opt. Lett. 14, 955 (1989).Google Scholar
  21. 21.
    M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan and E. W. Vanstryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26, 760 (1990).Google Scholar
  22. 22.
    M. Born and E. Wolf; Principles of Optics, 7th ed.; Cambridge University Press, 1999, p. 44.Google Scholar
  23. 23.
    S. Casalbuoni, B. Schmidt, P. Schmueser, V. Arsov, and S. Wesch, Ultra broadband terahertz source and beam line based on coherent transition radiation. Phys. Rev. ST.Accel.Beams 12, 030705 (2009).Google Scholar
  24. 24.
    A. Gopal, T. May, S. Herzer, A. Reinhard, S. Minardi, M. Schubert, U. Dillner, B. Pradarutti, J. Polz, T. Gaumnitz, M. C. Kaluza, O. Jaeckel, S. Riehemann, W. Ziegler, H-P. Gemuend, H-G. Meyer and G. G. Paulus, Observation of energetic no-collinear THz pulses from relativistic solid density plasmas. New Journal of Physics 14, 083012 (2012).Google Scholar
  25. 25.
    A. Gopal, S. Herzer, A. Schmidt, P. Singh, A. Reinhard, W. Ziegler, D. Broemmel, A. Karmakar, P. Gibbon, U. Dillner, T. May, H-G. Meyer, and G. G. Paulus, Observation of Gigawatt-Class THz Pulses from a Compact Laser-Driven Particle Accelerator Phys. Rev. Lett. 111, 074802 (2013).Google Scholar
  26. 26.
    A. Gopal, P. Singh, S. Herzer, A. Reinhard, A. Schmidt, U. Dillner, T. May, H.-G. Meyer, W. Ziegler and G. G. Paulus, Characterization of \(700 \mu \)J T rays generated during high-power laser solid interaction Opt.Lett. 38, 4705 (2013).Google Scholar
  27. 27.
    Ho-Jin Song and T. Nagatsuma, Handbook of Terahertz Technologies: Devices and Applications, Pan Stanford 2015.Google Scholar
  28. 28.
    D.G. Allis, A.M. Fedor, T.M. Korter, J.E. Bjarnason and E.R. Brown, Assignment of the lowest- lying THz absorption signatures in biotin and lactose monohydrate by solid-state density functional theory, Chem. Phys. Lett. 440, 203 (2007).Google Scholar
  29. 29.
    M. Jewariya, M. Nagai and K. Tanaka, Ladder Climbing on the Anharmonic Intermolecular Potential in an Amino Acid Microcrystal via an Intense Monocycle Terahertz Pulse, Phys. Rev. Lett. 105, 203003 (2010).Google Scholar
  30. 30.
    Y. Kawada, T. Yasuda, A. Nakanishi, K. Akiyama, and H. Takahashi, Single-shot terahertz spectroscopy using pulse-front tilting of an ultra-short probe pulse, Opt. Exp. 19, 11228 (2011).Google Scholar
  31. 31.
    G. M. Png, B. M. Fischer, D. Appadoo, R. Plathe and D. Abbott, Double-layered nitrocellulose membrane sample holding technique for THz and FIR spectroscopic measurements, Opt. Exp. 23, 4997 (2015).Google Scholar
  32. 32.
    S. Li, G. Kumar and T. E. Murphy, Terahertz nonlinear conduction and absorption saturation in silicon waveguides, Optica, 2, 554 (2015).Google Scholar
  33. 33.
    A.T. Tarekegne, H. Hirori,K.Tanaka, K. Iwaszczuk and P. U. Jepsen, Impact ionization dynamics in silicon by MV/cm THz fields, New J. Phys. 19, 123018 (2017).Google Scholar
  34. 34.
    M. C. Hoffmann, N. C. Brandt, H. Y. Hwang, Ka-Lo. Yeh, and K. A. Nelson, Terahertz Kerr effect, Appl. Phys. Lett. 95, 231105 (2009).Google Scholar
  35. 35.
    M. Dinu, F. Quochi and H. Garcia, Third-order nonlinearities in silicon at telecom wavelengths, Appl. Phys. Lett. 82(18), 2954 (2003).Google Scholar
  36. 36.
    Q. Lin, J. Zhang, G. Piredda, R. W. Boyd, P. M. Fauchet and G. P. Agrawal, Dispersion of silicon nonlinearities in the near infrared region, Appl. Phys. Lett. 91(2), 021111 (2007).Google Scholar
  37. 37.
    A. D. Bristow, N. Rotenberg, and H. M. van Driel, Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm, Appl. Phys. Lett. 90(19), 191104 (2007).Google Scholar
  38. 38.
    F. Gholami, S. Zlatanovic, A. Simic, L. Liu, D. Borlaug, N. Alic, M. P. Nezhad, Y. Fainman, and S. Radic, Third-order nonlinearity in silicon beyond 2350 nm, Appl. Phys. Lett. 99(8), 081102 (2011).Google Scholar
  39. 39.
    N.Hon, R. Soref and B. Jalali, The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the mid-wave and long-wave infrared, Appl. Phys. Lett. 110, 011301 (2011).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. Woldegeorgis
    • 1
    • 2
  • T. Kurihara
    • 4
  • B. Beleites
    • 1
    • 2
  • J. Bossert
    • 3
  • R. Grosse
    • 1
    • 2
  • G. G. Paulus
    • 1
    • 2
  • F. Ronneberger
    • 1
    • 2
  • A. Gopal
    • 1
    • 2
  1. 1.Helmholtz Institute JenaJenaGermany
  2. 2.Institut für Optik und Quantenelektronik, Physikalisch-Astronomische FakultätFriedrich-Schiller-Universität JenaJenaGermany
  3. 3.Otto Schott Institute of Materials ResearchFriedrich-Schiller-Universität JenaJenaGermany
  4. 4.Department of PhysicsUniversity of Konstanz, GermanyKonstanzGermany

Personalised recommendations