Advertisement

Metal-Coated <100>-Cut GaAs Coupled to Tapered Parallel-Plate Waveguide for Cherenkov-Phase-Matched Terahertz Detection: Influence of Crystal Thickness

  • Ramon delos Santos
  • Valynn Mag-usara
  • Anthony Tuico
  • Vernalyn Copa
  • Arnel Salvador
  • Kohji Yamamoto
  • Armando Somintac
  • Kazuyoshi Kurihara
  • Hideaki Kitahara
  • Masahiko Tani
  • Elmer Estacio
Article
  • 157 Downloads

Abstract

The influence of crystal thickness of metal-coated <100>-cut GaAs (M-G-M) on Cherenkov-phase-matched terahertz (THz) pulse detection was studied. The M-G-M detectors were utilized in conjunction with a metallic tapered parallel-plate waveguide (TPPWG). Polarization-sensitive measurements were carried out to exemplify the efficacy of GaAs in detecting transverse magnetic (TM)- and transverse electric (TE)-polarized THz waves. The reduction of GaAs’ thickness increased the THz amplitude spectra of the detected TM-polarized THz electro-optic (EO) signal due to enhanced electric field associated with a more tightly-focused and well-concentrated THz radiation on the thinner M-G-M. The higher-fluence THz beam coupled to the thinner M-G-M improved the integrated intensity of the detected THz amplitude spectrum. This trend was not observed for TE-polarized THz waves, wherein the integrated intensities were almost comparable. Nevertheless, good agreement of spectral line shapes of the superposed TM- and TE-polarized THz-EO signals with that of elliptically polarized THz-EO signal demonstrates excellent polarization-resolved detection capabilities of M-G-M via Cherenkov-phase-matched EO sampling technique.

Keywords

Terahertz waves Electro-optic sampling Cherenkov-phase-matching Gallium arsenide Waveguide 

Notes

Funding Information

This work was funded in part by the grants from Japan Science and Technology Agency (JST) through “Collaborative Research Based on Industrial Demand” program, Japan Society for the Promotion of Science (JSPS) through the Grant-in-Aid for Scientific Research (B) (Grant no. 25286066), and University of the Philippines (UP) System Emerging Interdisciplinary Research Program (OVPAA-EIDR-C06-04).

References

  1. 1.
    M. Tani, K. Horita, T. Kinoshita, C. T. Que, E. Estacio, K. Yamamoto, and M. I. Bakunov, Opt. Express, 19(21), 19901–19906 (2011).CrossRefGoogle Scholar
  2. 2.
    M. Tani, T. Kinoshita, T. Nagase, K. Horita, C. T. Que, E. Estacio, K. Yamamoto, and M. I. Bakunov, Opt. Express, 21(8), 9277–9288 (2013).CrossRefGoogle Scholar
  3. 3.
    R. delos Santos, S. Ozawa, V. Mag-usara, S. Azuma, A. Tuico, V. Copa, A. Salvador, K. Yamamoto, A. Somintac, K. Kurihara, H. Kitahara, M. Tani, and E. Estacio, Opt. Express, 24(22), 24980–24988 (2016).CrossRefGoogle Scholar
  4. 4.
    M. Vossebürger, M. Brucherseifer, G. C. Cho, H. G. Roskos, and H. Kurz, Appl. Opt., 37(15), 3368–3371 (1998).CrossRefGoogle Scholar
  5. 5.
    Z. Zhao, A. Schwagmann, F. Ospald, D. C. Driscoll, H. Lu, A. C. Gossard, and J. H. Smet, Opt. Express, 18(15), 15956–15963 (2010).CrossRefGoogle Scholar
  6. 6.
    Q. Wu, and X. C. Zhang, Appl. Phys. Lett., 68(12), 1604–1606 (1996).CrossRefGoogle Scholar
  7. 7.
    Q. Chen, M. Tani, Z. Jiang, and X. C. Zhang, J. Opt. Soc. Am. B, 18(6), 823–831 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Nagai, K. Tanaka, H. Ohtake, T. Bessho, T. Sugiura, T. Hirosumi, and M. Yoshida, Appl. Phys. Lett., 85(18), 3974–3976 (2004).CrossRefGoogle Scholar
  9. 9.
    D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett., 53(16), 1555–1558 (1984).CrossRefGoogle Scholar
  10. 10.
    J. A. Valdmanis, G. A. Mourou, and C. W. Gabel, IEEE J. Quantum Electron., 19(4), 664–667 (1983).CrossRefGoogle Scholar
  11. 11.
    Q. Wu, and X. C. Zhang, Appl. Phys. Lett., 67(24), 3523–3525 (1995).CrossRefGoogle Scholar
  12. 12.
    S. Namba, J. Opt. Soc. Am., 51(1), 76–79 (1961).CrossRefGoogle Scholar
  13. 13.
    R. W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, 2003), pp. 519–520Google Scholar
  14. 14.
    Y. S. Lee, Principles of Terahertz Science and Technology (Springer Science & Business Media, 2009), pp. 94–95Google Scholar
  15. 15.
    D. Liu, and J. Qin, Int. J. Infrared Millim. Waves, 24(6), 929–939 (2003).CrossRefGoogle Scholar
  16. 16.
    S. Tsuzuki, D. Takeshima, T. Sakon, T. Kinoshita, T. Nagase, K. Kurihara, K. Yamamoto, F. Kuwashima, T. Furuya, E. Estacio, K. Kawase, M. I. Bakunov, and M. Tani, Appl. Phys. Express, 7(11), 112401 (2014).CrossRefGoogle Scholar
  17. 17.
    R. Mendis, and D. M. Mittleman, Opt. Express, 17(17), 14839–14850 (2009).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ramon delos Santos
    • 1
    • 2
  • Valynn Mag-usara
    • 3
  • Anthony Tuico
    • 1
  • Vernalyn Copa
    • 1
  • Arnel Salvador
    • 1
  • Kohji Yamamoto
    • 3
  • Armando Somintac
    • 1
  • Kazuyoshi Kurihara
    • 4
  • Hideaki Kitahara
    • 3
  • Masahiko Tani
    • 3
  • Elmer Estacio
    • 1
  1. 1.National Institute of Physics, College of ScienceUniversity of the Philippines, DilimanQuezon CityPhilippines
  2. 2.Department of Physics, School of Science and EngineeringAteneo de Manila University, Loyola HeightsQuezon CityPhilippines
  3. 3.Research Center for Development of Far-Infrared RegionUniversity of FukuiFukuiJapan
  4. 4.Graduate School of EducationUniversity of FukuiFukuiJapan

Personalised recommendations