Is there a Biological Basis for Therapeutic Applications of Millimetre Waves and THz Waves?

  • Mats-Olof Mattsson
  • Olga Zeni
  • Myrtill SimkóEmail author


Millimetre wave (MMW) and THz wave (THz) applications are already employed in certain industrial and medical environments for non-destructive quality control, and medical imaging, diagnosis, and therapy, respectively. The aim of the present study is to investigate if published experimental studies (in vivo and in vitro) provide evidence for “non-thermal” biological effects of MMW and THz. Such effects would occur in absence of tissue heating and associated damage and are the ones that can be exploited for therapeutic medical use. The investigated studies provide some evidence for both MMW and THz that can influence biological systems in a manner that is not obviously driven by tissue heating. However, the number of relevant studies is very limited which severely limits the drawing of any far-reaching conclusions. Furthermore, the studies have not addressed specific interaction mechanisms and do not provide hints for future mechanistic studies. Also, the studies do not indicate any specific importance regarding power density levels, frequencies, or exposure duration. It is also unclear if any specific biological endpoints are especially sensitive. Any therapeutic potential of MMW or THz has to be evaluated based on future high-quality studies dealing with physical, bio-physical, and biological aspects that have specific health-related perspectives in mind.


Millimetre wave THz wave Non-thermal In vivo In vitro 


Funding Information

MS and MOM received a financial support from Forschungsstiftung Strom und Mobilkommunikation, CH (FSM; Project B2014-04). MOM received intramural funding from AIT for parts of this study.

Supplementary material

10762_2018_483_MOESM1_ESM.docx (213 kb)
ESM 1 (DOCX 212 kb)


  1. 1.
    M. C. Ziskin, ‘Millimeter waves: acoustic and electromagnetic.’, Bioelectromagnetics, vol. 34, no. 1, pp. 3–14, Jan. 2013.CrossRefGoogle Scholar
  2. 2.
    K. Humphreys et al., ‘Medical applications of terahertz imaging: a review of current technology and potential applications in biomedical engineering.’, Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 2, pp. 1302–1305, 2004.Google Scholar
  3. 3.
    C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, ‘The potential of terahertz imaging for cancer diagnosis: A review of investigations to date’, Quatitative Imaging Med. Surg., vol. 2, no. 1, pp. 33–45, Mar. 2012.Google Scholar
  4. 4.
    L. V Titova et al., ‘Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: a new therapeutic avenue?’, Sci. Rep., vol. 3, p. 2363, 2013.CrossRefGoogle Scholar
  5. 5.
    T. T. L. Kristensen, W. Withayachumnankul, P. U. Jepsen, and D. Abbott, ‘Modeling terahertz heating effects on water.’, Opt. Express, vol. 18, no. 5, pp. 4727–4739, 2010.CrossRefGoogle Scholar
  6. 6.
    O. P. Cherkasova, V. I. Fedorov, E. F. Nemova, and A. S. Pogodin, ‘Influence of terahertz laser radiation on the spectral characteristics and functional properties of albumin’, Opt. Spectrosc., vol. 107, no. 4, pp. 534–537, 2009.CrossRefGoogle Scholar
  7. 7.
    B. S. Alexandrov, V. Gelev, A. R. Bishop, A. Usheva, and K. Rasmussen, ‘DNA breathing dynamics in the presence of a terahertz field’, Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 374, no. 10, pp. 1214–1217, 2010.zbMATHGoogle Scholar
  8. 8.
    Y. Le Dréan et al., ‘State of knowledge on biological effects at 40-60 GHz’, Comptes Rendus Phys., vol. 14, no. 5, pp. 402–411, 2013.CrossRefGoogle Scholar
  9. 9.
    M. K. Logani, A. Bhanushali, A. Anga, A. Majmundar, I. Szabo, and M. C. Ziskin, ‘Combined millimeter wave and cyclophosphamide therapy of an experimental murine melanoma’, Bioelectromagnetics, vol. 25, no. 7, pp. 516–523, 2004.CrossRefGoogle Scholar
  10. 10.
    M. K. Logani, I. Szabo, V. Makar, A. Bhanushali, S. Alekseev, and M. C. Ziskin, ‘Effect of millimeter wave irradiation on tumor metastasis’, Bioelectromagnetics, vol. 27, no. 4, pp. 258–264, 2006.CrossRefGoogle Scholar
  11. 11.
    T. I. Usichenko, O. I. Ivashkivsky, and V. V Gizhko, ‘Treatment of rheumatoid arthritis with electromagnetic millimeter waves applied to acupuncture points—a randomized double blind clinical study.’, Acupunct. Electrother. Res., vol. 28, no. 1–2, pp. 11–18, 2003.CrossRefGoogle Scholar
  12. 12.
    A. A. Radzievsky, O. V. Gordiienko, S. Alekseev, I. Szabo, A. Cowan, and M. C. Ziskin, ‘Electromagnetic millimeter wave induced hypoalgesia: Frequency dependence and involvement of endogenous opioids’, Bioelectromagnetics, vol. 29, no. 4, pp. 284–295, May 2008.CrossRefGoogle Scholar
  13. 13.
    M. K. Logani, M. K. Bhopale, and M. C. Ziskin, ‘Millimeter Wave and Drug Induced Modulation of the Immune System—Application in Cancer Immunotherapy’, J. Cell Sci. Ther., vol. s5, no. S5, 2012.Google Scholar
  14. 14.
    A. A. Radzievsky, M. A. Rojavin, A. Cowan, S. I. Alekseev, A. A. Radzievsky, and M. C. Ziskin, ‘Peripheral neural system involvement in hypoalgesic effect of electromagnetic millimeter waves’, Life Sci., vol. 68, no. 10, pp. 1143–1151, 2001.CrossRefGoogle Scholar
  15. 15.
    T. I. Usichenko, H. Edinger, V. V. Gizhko, C. Lehmann, M. Wendt, and F. Feyerherd, ‘Low-intensity electromagnetic millimeter waves for pain therapy’, Evidence-based Complementary and Alternative Medicine, vol. 3, no. 2. pp. 201–207, 2006.CrossRefGoogle Scholar
  16. 16.
    T. Partyla, H. Hacker, H. Edinger, B. Leutzow, J. Lange, and T. Usichenko, ‘Remote Effects of Electromagnetic Millimeter Waves on Experimentally Induced Cold Pain: A Double-Blinded Crossover Investigation in Healthy Volunteers’, Anesth. Analg., vol. 124, no. 3, pp. 980–985, 2017.CrossRefGoogle Scholar
  17. 17.
    A. Y. Owda et al., ‘Millimeter-wave emissivity as a metric for the non-contact diagnosis of human skin conditions.’, Bioelectromagnetics, vol. 38, no. 7, pp. 559–569, Oct. 2017.CrossRefGoogle Scholar
  18. 18.
    P. Tewari et al., ‘In vivo terahertz imaging of rat skin burns’, J. Biomed. Opt., vol. 17, no. 4, p. 40503, 2012.CrossRefGoogle Scholar
  19. 19.
    H. Chen et al., ‘High-sensitivity in vivo THz transmission imaging of early human breast cancer in a subcutaneous xenograft mouse model’, Opt. Express, vol. 19, no. 22, p. 21552, 2011.Google Scholar
  20. 20.
    S. Sy et al., ‘Terahertz spectroscopy of liver cirrhosis: Investigating the origin of contrast’, Phys. Med. Biol., vol. 55, no. 24, pp. 7587–7596, 2010.CrossRefGoogle Scholar
  21. 21.
    S. J. Oh et al., ‘Study of freshly excised brain tissues using terahertz imaging’, Biomed. Opt. Express, vol. 5, no. 8, p. 2837, 2014.CrossRefGoogle Scholar
  22. 22.
    X. Yang et al., ‘Biomedical Applications of Terahertz Spectroscopy and Imaging.’, Trends Biotechnol., vol. 34, no. 10, pp. 810–24, Oct. 2016.CrossRefGoogle Scholar
  23. 23.
    V. I. Fedorov, ‘The biological effects of terahertz laser radiation as a fundamental premise for designing diagnostic and treatment methods’, Biophysics (Oxf)., vol. 62, no. 2, pp. 324–330, 2017.CrossRefGoogle Scholar
  24. 24.
    M. Wang, G. Yang, W. Li, and Q. Wu, ‘An overview of cancer treatment by terahertz radiation’, in 2013 I.E. MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications, IMWS-BIO 2013-Proceedings, 2013.Google Scholar
  25. 25.
    I. Echchgadda et al., ‘Terahertz Radiation: A Non-contact Tool for the Selective Stimulation of Biological Responses in Human Cells’, IEEE Trans. Terahertz Sci. Technol., vol. 6, no. 1, pp. 54–68, 2016.CrossRefGoogle Scholar
  26. 26.
    M. Simkó, D. Remondini, O. Zeni, and M. R. Scarfi, ‘Quality Matters: Systematic Analysis of Endpoints Related to “Cellular Life” in Vitro Data of Radiofrequency Electromagnetic Field Exposure’, Int. J. Environ. Res. Public Health, vol. 13, no. 7, p. 701, Jul. 2016.CrossRefGoogle Scholar
  27. 27.
    C. K. Chou et al., ‘Radio frequency electromagnetic exposure: tutorial review on experimental dosimetry.’, Bioelectromagnetics, vol. 17, no. 3, pp. 195–208, 1996.CrossRefGoogle Scholar
  28. 28.
    N. Kuster and F. Schönborn, ‘Recommended minimal requirements and development guidelines for exposure setups of bio-experiments addressing the health risk concern of wireless communications.’, Bioelectromagnetics, vol. 21, no. 7, pp. 508–14, 2000.CrossRefGoogle Scholar
  29. 29.
    J. Schilderet, D. Spät, T. Samaras, W. Oesch, and N. Kuster, ‘In vitro exposure systems for RF exposures at 900 MHz’, IEEE Trans. Microw. Theory Tech., vol. 52, no. 8 II, pp. 2067–2075, 2004.Google Scholar
  30. 30.
    A. Paffi et al., ‘Considerations for developing an RF exposure system: A review for in vitro biological experiments’, IEEE Trans. Microw. Theory Tech., vol. 58, no. 10, pp. 2702–2714, 2010.CrossRefGoogle Scholar
  31. 31.
    O. Zeni and M. R. Scarfì, ‘Experimental requirements for in vitro studies aimed to evaluate the biological effects of radiofrequency radiation’, Microw. Mater. Charact., pp. 121–138, Nov. 2012.Google Scholar
  32. 32.
    International Commission on Non-Ionizing Radiation Protection (ICNIRP), ‘ICNIRP Guidelines for Limiting Exposure To Time-Varying Electric, Magnetic and Electromagnetic fields’, Health Phys., vol. 74, pp. 494–522, 1998.Google Scholar
  33. 33.
    J. F. Federici et al., ‘THz imaging and sensing for security applications - Explosives, weapons and drugs’, Semiconductor Science and Technology, vol. 20, no. 7. 2005.Google Scholar
  34. 34.
    J. Federici and L. Moeller, ‘Review of terahertz and subterahertz wireless communications’, Journal of Applied Physics, vol. 107, no. 11. 2010.Google Scholar
  35. 35.
    E. Berry, ‘Risk perception and safety issues’, in Journal of Biological Physics, 2003, vol. 29, no. 2–3, pp. 263–267.Google Scholar
  36. 36.
    M. Saviz, O. Spathmann, J. Streckert, V. Hansen, M. Clemens, and R. Faraji-Dana, ‘Theoretical estimations of safety thresholds for terahertz exposure of surface tissues’, IEEE Trans. Terahertz Sci. Technol., vol. 3, no. 5, pp. 635–640, 2013.CrossRefGoogle Scholar
  37. 37.
    International Commission on Non-Ionizing Radiation Protection (ICNIRP), ‘Guidelines on UV radiation exposure limits.’, Health Phys., vol. 71, no. 6, p. 978, Dec. 1996.Google Scholar
  38. 38.
    M. Mattsson and M. Simkó, ‘Grouping of Experimental Conditions as an Approach to Evaluate Effects of Extremely Low-Frequency Magnetic Fields on Oxidative Response in in vitro Studies.’, Front. public Heal., vol. 2, no. September, p. 132, 2014.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Energy – ERTAIT Austrian Institute of TechnologyTullnAustria
  2. 2.SciProof International ABÖstersundSweden
  3. 3.CNR-IREANaplesItaly

Personalised recommendations