A Millimetre-Wave Cuboid Solid Immersion Lens with Intensity-Enhanced Amplitude Mask Apodization


Photonic jet is a narrow, highly intensive, weak-diverging beam propagating into a background medium and can be produced by a cuboid solid immersion lens (SIL) in both transmission and reflection modes. Amplitude mask apodization is an optical method to further improve the spatial resolution of a SIL imaging system via reduction of waist size of photonic jet, but always leading to intensity loss due to central masking of the incoming plane wave. In this letter, we report a particularly sized millimetre-wave cuboid SIL with the intensity-enhanced amplitude mask apodization for the first time. It is able to simultaneously deliver extra intensity enhancement and waist narrowing to the produced photonic jet. Both numerical simulation and experimental verification of the intensity-enhanced apodization effect are demonstrated using a copper-masked Teflon cuboid SIL with 22-mm side length under radiation of a plane wave with 8-mm wavelength. Peak intensity enhancement and the lateral resolution of the optical system increase by about 36.0% and 36.4% in this approach, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  2. 2.

    A. N. Vamivakas, R. D. Younger, B. B. Goldberg, A. K. Swan, M. S. Ünlü, E. R. Behringer, Am. J. Phys. 76, 758 (2008).

    Article  Google Scholar 

  3. 3.

    S. Y. Yim, J. H. Kim, J. Lee, J. Opt. Soc. Korea 15, 78–81 (2011).

    Article  Google Scholar 

  4. 4.

    N.V. Chernomyrdin, A.O. Schadko, S.P. Lebedev, V.L. Tolstoguzov, V.N. Kurlov, I.V. Reshetov, I.E. Spektor, M. Skorobogatiy, S.O. Yurchenko, K.I. Zaytsev, Applied Physics Letters 110 (22), 221109 (2017)

    Article  Google Scholar 

  5. 5.

    D. McCloskey, J. J. Wang, J. F. Donegan, Opt. Express 20, 128–140 (2012).

    Article  Google Scholar 

  6. 6.

    B. S. Luk'yanchuk, R. Paniagua-Dominguez, I. V. Minin, O. V. Minin, Z. B. Wang, Opt. Mater. Express 7, 1820–1847 (2017).

    Article  Google Scholar 

  7. 7.

    I. V. Minin, and O. V. Minin, Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit (Springer, Berlin, 2016).

    Google Scholar 

  8. 8.

    S. M. Mansfield, G. S. Kino, Appl. Phys. Lett. 57, 2615 (1990).

    Article  Google Scholar 

  9. 9.

    T. R. Corle, G. S. Kino, S. M. Mansfield, U.S. Patent, US5121256 A (1992).

  10. 10.

    B. D. Terris, H. J. Mamin, D. Rugar, Appl. Phys. Lett. 65, 388 (1994).

    Article  Google Scholar 

  11. 11.

    W. Fan, B. Yan, Z. B. Wang, L. Wu, Sci. Adv. 2, e1600901 (2016).

    Article  Google Scholar 

  12. 12.

    L. Yue, B. Yan, Z. B. Wang, Opt. Lett. 41, 1336–1339 (2016).

    Article  Google Scholar 

  13. 13.

    C. M. Soukoulis, M. Wegener, Nat. Photonics 5, 523–530 (2011).

    Article  Google Scholar 

  14. 14.

    I.N. Dolganova, K.I. Zaytsev, A.A. Metelkina,V.E. Karasik, S.O. Yurchenko, Review of Scientific Instruments 86 (11), 113704 (2015).

    Article  Google Scholar 

  15. 15.

    I. V. Minin, O. V. Minin, Patent of Russia 153686 (2015).

  16. 16.

    B. Yan, L. Yue, Z. B. Wang, Opt. Commun. 370, 140–144 (2016).

    Article  Google Scholar 

  17. 17.

    M. Wu, R. Chen, J. Soh, Y. Shen, L. Jiao, J. Wu, X. Chen, R. Ji, M. Hong, Sci. Rep. 6, 31637 (2016).

    Article  Google Scholar 

  18. 18.

    H. Luo, C. Zhou, Appl. Opt. 43, 6242–6247 (2004).

    Article  Google Scholar 

  19. 19.

    M. Yun, M. Wang, L. Liu, J. Opt. A: Pure Appl. Opt. 7, 640 (2005).

    Article  Google Scholar 

  20. 20.

    L. Yue, B. Yan, J. N. Monks, Z. B. Wang, N. T. Tung, V. D. Lam, O. V. Minin, I. V. Minin, J. Phys. D: Appl. Phys. 50, 175102 (2017).

    Article  Google Scholar 

  21. 21.

    Y. E. Geints, I. V. Minin, E. K. Panina, A. A. Zemlyanov, O. V. Minin, Opt. Quant. Electron. 49, 118 (2017).

    Article  Google Scholar 

  22. 22.

    V. Pacheco-Peña, M. Beruete, I. V. Minin, O. V. Minin, Appl. Phys. Lett. 105, 084102 (2014).

    Article  Google Scholar 

  23. 23.

    H. H. Nguyen Pham, S. Hisatake, I. V. Minin, O. V. Minin, T. Nagatsuma, Appl. Phys. Lett. 108, 191102 (2016).

    Article  Google Scholar 

  24. 24.

    V. E. Lyubchenko, Science and Technology of Millimetre Wave Components and Devices (CRC press, Boca Raton, 2001).

    Google Scholar 

  25. 25.

    A. Elhawil, L. Zhang, J. Stiens, C. De Tandt, N. A. Gotzen, G. V. Assche, and R. Vounckx, A quasi-optical free-space method for dielectric constant characterization of polymer materials in mm-wave band (Proceedings Symposium IEEE/LEOS Benelux Chapter, Brussels, 2007).

  26. 26.

    H. J. Hagemann, W. Gudat, C. Kunz, J. Opt. Soc. Am. 65, 742–744 (1975).

    Article  Google Scholar 

  27. 27.

    H. J. Hagemann, W. Gudat, C. Kunz. DESY report SR-74/7 (1974).

  28. 28.

    W. G. Kim, J. P. Thakur, Y.H. Kim, Microwave Opt. Technol. Lett. 52, 1221 (2010).

    Article  Google Scholar 

  29. 29.

    T. Nozokido, J. Bae, K. Mizuno, IEEE Trans. on Microwave Theory and Techn. 49, 491–499 (2001).

    Article  Google Scholar 

  30. 30.

    I. V. Minin, O. V. Minin, Microwave Opt. Technol. Lett. 56, 2436–2439 (2014).

    Article  Google Scholar 

  31. 31.

    I. V. Minin, O. V. Minin, Y. Geintz, Ann. Phys. (Berlin) 527, 491 (2015).

    Article  Google Scholar 

Download references


This work received financial support from the Sêr Cymru National Research Network in Advanced Engineering and Materials (NRNF66 and NRN113), Wales, UK, the Knowledge Economy Skills Scholarships (KESS 2, BUK289), Wales, UK, Tomsk Polytechnic University Competitiveness Enhancement Program grant, Russia, and Mendeleev scientific fund of Tomsk State University, Russia.

Author information



Corresponding authors

Correspondence to Liyang Yue or Igor V. Minin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yue, L., Yan, B., Monks, J.N. et al. A Millimetre-Wave Cuboid Solid Immersion Lens with Intensity-Enhanced Amplitude Mask Apodization. J Infrared Milli Terahz Waves 39, 546–552 (2018). https://doi.org/10.1007/s10762-018-0479-1

Download citation


  • Solid immersion lens
  • Apodization
  • Photonic jet
  • Cuboid lens
  • Millimetre-wave