Skip to main content
Log in

Accurate Measurement of Absolute Terahertz Power Using Broadband Calorimeter

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper presents a highly sensitive terahertz (THz) calorimeter developed using a magnetically loaded epoxy as a broadband absorber. The reflection loss of the absorber, which has a pyramidally textured surface, is less than 0.04, as determined using a THz time-domain spectrometer and a vector network analyzer. The THz calorimeter successfully enabled the measurement of the absolute THz power from a photomixer at microwatt levels at room temperature. The measurement uncertainties at a 95% confidence level were 6.2% for 13 μW at 300 GHz and 5.6% for 1.5 μW at 1 THz, respectively. Details of the evaluation and uncertainty analyses are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Nagatsuma, G. Ducournau, C.C. Renaud, Nat. Photonics 10, 371–379 (2016)

    Article  Google Scholar 

  2. J. Lehman, M. Dowell, N.B. Popovic, K. Betz, E. Grossman, Metrologia 49(4), 583–587 (2012)

    Article  Google Scholar 

  3. A. Steiger, M. Kehrt, C. Monte, R. Müller, Opt. Exp. 21(12), 14466–14473 (2013)

    Article  Google Scholar 

  4. Y. Deng, Q. Sun, J. Yu, Y. Lin, J. Wang, Opt. Exp. 21(5), 5737–5742 (2013)

    Article  Google Scholar 

  5. A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, J. Lehman, IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016)

    Google Scholar 

  6. B. Globisch, R.J.B. Dietz, T. Göbel, M. Schell, W. Bohmeyer, R. Müller, A. Steiger, Opt. Lett. 40(15), 3544–3547 (2015)

    Article  Google Scholar 

  7. H. Iida, M. Kinoshita, K. Amemiya, Y. Shimada, Opt. Lett. 39(6), 1609–1612 (2014)

    Article  Google Scholar 

  8. ECCOSORB® MF, Lossy, Magnetically Loaded, Machinable Stock (Emerson & Cuming Microwave Products, Randolph, MA), http://www.eccosorb.com/Collateral/Documents/English-US/MF.pdf#search=%27eccosorb+MF%27. Accessed 9 January 2018

  9. H. Hemmati, J.C. Mather, and W.L. Eichhorn, Appl. Opt. 24(24), 4489–4492 (1985).

    Article  Google Scholar 

  10. ECCOSORB® MF-117 used in Waveguide Termination for 84–116 GHz Receiver Development Program (Emerson & Cuming Microwave Products, Randolph, MA), http://www.eccosorb.com/Collateral/Documents/English-US/mf-117-alma.pdf. Accessed 9 January 2018

  11. H. Iida, M. Kinoshita, Proc. 42nd Int. Conf. Infrared Millim. Terahertz Waves, RD.50 (2017)

  12. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–351 (1941)

    Google Scholar 

  13. I. Zivkovic, A. Murk, Prog. Electromagn. Res. B 33, 277–289 (2011)

    Article  Google Scholar 

  14. A. Lönnqvist, A. Tamminen, J. Mallat, A.V. Räisänen, IEEE Trans. Microw. Theory Tech. 54(9), 3486–3491 (2006)

    Article  Google Scholar 

  15. A. Tamminen, A. Lönnqvist, J. Mallat, A.V. Räisänen, IEEE Trans. Microw. Theory Tech. 56(3), 632–637 (2008)

    Article  Google Scholar 

  16. Y. Suzuki, A. Murata, M. Araragi, T. Inoue, IEEE Trans. Instrum. Meas. 40(2) 219–221 (1991)

    Article  Google Scholar 

  17. Evaluation of measurement data — Guide to the expression of uncertainty in measurement, 1st ed., Joint Committee for Guides in Metrology (JCGM), document JCGM 100:2008 (2008)

  18. R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, A. Steiger, J. Infrared Millim. Terahertz Waves 35(8), 659–670 (2014)

    Article  Google Scholar 

  19. P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon Press, New York, 1963), pp. 80–98

    MATH  Google Scholar 

  20. R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch, T. Kürner, IEEE Trans. Ant. Propag. 55(11), 3002–3009 (2007)

    Article  Google Scholar 

  21. J. Säily, A.V. Räisänen, Helsinki University of Technology Radio Laboratory Publications, Report S 258 (2003)

  22. K. Amemiya, T. Inoue, D. Fukuda, S. Mukai, T. Numata, Proc. 10th Int. Conf. New Developments and Applications in Optical Radiometry, MO_P_04 (2008)

  23. M. Kinoshita, H. Iida, K. Amemiya, Y. Shimada, Proc. 39th Int. Conf. Infrared Millim. Terahertz Waves, M5-P7.1 (2014)

  24. H. Iida, M. Kinoshita, K. Amemiya, Y. Shimada, Proc. 40th Int. Conf. Infrared Millim. Terahertz Waves, M3A-4 (2015)

Download references

Acknowledgements

The authors would like to thank Y. Kato and M. Horibe of the National Institute of Advanced Industrial Science and Technology for their support in the VNA measurements.

Funding

This work was supported by JSPS KAKENHI (Grant Number JP16K06403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Iida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iida, H., Kinoshita, M. & Amemiya, K. Accurate Measurement of Absolute Terahertz Power Using Broadband Calorimeter. J Infrared Milli Terahz Waves 39, 409–421 (2018). https://doi.org/10.1007/s10762-018-0477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0477-3

Keywords

Navigation