Advertisement

Accurate Measurement of Absolute Terahertz Power Using Broadband Calorimeter

  • Hitoshi Iida
  • Moto Kinoshita
  • Kuniaki Amemiya
Article
  • 95 Downloads

Abstract

This paper presents a highly sensitive terahertz (THz) calorimeter developed using a magnetically loaded epoxy as a broadband absorber. The reflection loss of the absorber, which has a pyramidally textured surface, is less than 0.04, as determined using a THz time-domain spectrometer and a vector network analyzer. The THz calorimeter successfully enabled the measurement of the absolute THz power from a photomixer at microwatt levels at room temperature. The measurement uncertainties at a 95% confidence level were 6.2% for 13 μW at 300 GHz and 5.6% for 1.5 μW at 1 THz, respectively. Details of the evaluation and uncertainty analyses are also presented.

Keywords

Terahertz power Calorimeter Broadband absorber Uncertainty 

Notes

Acknowledgements

The authors would like to thank Y. Kato and M. Horibe of the National Institute of Advanced Industrial Science and Technology for their support in the VNA measurements.

Funding Information

This work was supported by JSPS KAKENHI (Grant Number JP16K06403).

References

  1. 1.
    T. Nagatsuma, G. Ducournau, C.C. Renaud, Nat. Photonics 10, 371–379 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Lehman, M. Dowell, N.B. Popovic, K. Betz, E. Grossman, Metrologia 49(4), 583–587 (2012)CrossRefGoogle Scholar
  3. 3.
    A. Steiger, M. Kehrt, C. Monte, R. Müller, Opt. Exp. 21(12), 14466–14473 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Deng, Q. Sun, J. Yu, Y. Lin, J. Wang, Opt. Exp. 21(5), 5737–5742 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Steiger, R. Müller, A. Remesal Oliva, Y. Deng, Q. Sun, M. White, J. Lehman, IEEE Trans. Terahertz Sci. Technol. 6(5), 664–669 (2016)Google Scholar
  6. 6.
    B. Globisch, R.J.B. Dietz, T. Göbel, M. Schell, W. Bohmeyer, R. Müller, A. Steiger, Opt. Lett. 40(15), 3544–3547 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Iida, M. Kinoshita, K. Amemiya, Y. Shimada, Opt. Lett. 39(6), 1609–1612 (2014)CrossRefGoogle Scholar
  8. 8.
    ECCOSORB® MF, Lossy, Magnetically Loaded, Machinable Stock (Emerson & Cuming Microwave Products, Randolph, MA), http://www.eccosorb.com/Collateral/Documents/English-US/MF.pdf#search=%27eccosorb+MF%27. Accessed 9 January 2018
  9. 9.
    H. Hemmati, J.C. Mather, and W.L. Eichhorn, Appl. Opt. 24(24), 4489–4492 (1985).CrossRefGoogle Scholar
  10. 10.
    ECCOSORB® MF-117 used in Waveguide Termination for 84–116 GHz Receiver Development Program (Emerson & Cuming Microwave Products, Randolph, MA), http://www.eccosorb.com/Collateral/Documents/English-US/mf-117-alma.pdf. Accessed 9 January 2018
  11. 11.
    H. Iida, M. Kinoshita, Proc. 42nd Int. Conf. Infrared Millim. Terahertz Waves, RD.50 (2017)Google Scholar
  12. 12.
    K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341–351 (1941)Google Scholar
  13. 13.
    I. Zivkovic, A. Murk, Prog. Electromagn. Res. B 33, 277–289 (2011)CrossRefGoogle Scholar
  14. 14.
    A. Lönnqvist, A. Tamminen, J. Mallat, A.V. Räisänen, IEEE Trans. Microw. Theory Tech. 54(9), 3486–3491 (2006)CrossRefGoogle Scholar
  15. 15.
    A. Tamminen, A. Lönnqvist, J. Mallat, A.V. Räisänen, IEEE Trans. Microw. Theory Tech. 56(3), 632–637 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Suzuki, A. Murata, M. Araragi, T. Inoue, IEEE Trans. Instrum. Meas. 40(2) 219–221 (1991)CrossRefGoogle Scholar
  17. 17.
    Evaluation of measurement data — Guide to the expression of uncertainty in measurement, 1st ed., Joint Committee for Guides in Metrology (JCGM), document JCGM 100:2008 (2008)Google Scholar
  18. 18.
    R. Müller, W. Bohmeyer, M. Kehrt, K. Lange, C. Monte, A. Steiger, J. Infrared Millim. Terahertz Waves 35(8), 659–670 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon Press, New York, 1963), pp. 80–98zbMATHGoogle Scholar
  20. 20.
    R. Piesiewicz, C. Jansen, D. Mittleman, T. Kleine-Ostmann, M. Koch, T. Kürner, IEEE Trans. Ant. Propag. 55(11), 3002–3009 (2007)CrossRefGoogle Scholar
  21. 21.
    J. Säily, A.V. Räisänen, Helsinki University of Technology Radio Laboratory Publications, Report S 258 (2003)Google Scholar
  22. 22.
    K. Amemiya, T. Inoue, D. Fukuda, S. Mukai, T. Numata, Proc. 10th Int. Conf. New Developments and Applications in Optical Radiometry, MO_P_04 (2008)Google Scholar
  23. 23.
    M. Kinoshita, H. Iida, K. Amemiya, Y. Shimada, Proc. 39th Int. Conf. Infrared Millim. Terahertz Waves, M5-P7.1 (2014)Google Scholar
  24. 24.
    H. Iida, M. Kinoshita, K. Amemiya, Y. Shimada, Proc. 40th Int. Conf. Infrared Millim. Terahertz Waves, M3A-4 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Metrology Institute of JapanNational Institute of Advanced Industrial Science and TechnologyTsukubaJapan

Personalised recommendations