Skip to main content
Log in

Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We present a reflective spatial phase shifter which operates at terahertz regime above 325 GHz. The controllable permittivity of the nematic liquid crystals was utilized to realize a tunable terahertz (THz) reflective phase shifter. The reflective characteristics of the terahertz electromagnetic waves and the liquid crystal parameters were calculated and analyzed. We provide the simulation results for the effect of the incident angle of the plane wave on the reflection. The experiment was carried out considering an array consisting of 30 × 30 patch elements, printed on a 20 × 20 mm quartz substrate with 1-mm thickness. The phase shifter provides a tunable phase range of 300° over the frequency range of 325 to 337.6 GHz. The maximum phase shift of 331° is achieved at 330 GHz. The proposed phase shifter is a potential candidate for THz applications, particularly for reconfigurable reflectarrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Vieweg, M. K. Shakfa, B. Scherger, M. Mikulics, and M. Koch, "THz Properties of Nematic Liquid Crystals," Journal Of Infrared Millimeter And Terahertz Waves 31, 1312–1320 (2010).

    Article  Google Scholar 

  2. N. Vieweg, M. A. Celik, S. Zakel, V. Gupta, G. Frenking, and M. Koch, "Terahertz Absorption of Nematic Liquid Crystals," Journal Of Infrared Millimeter And Terahertz Waves 35, 478–485 (2014).

    Article  Google Scholar 

  3. X. F. Li, N. Tan, M. Pivnenko, J. Sibik, J. A. Zeitler, and D. P. Chu, "High-birefringence nematic liquid crystal for broadband THz applications," Liquid Crystals 43, 955–962 (2016).

    Article  Google Scholar 

  4. M. Jost, A. Gaebler, C. Weickhmann, S. Strunck, W. Hu, O. H. Karabey, et al., "Evolution of Microwave Nematic Liquid Crystal Mixtures and Development of Continuously Tuneable Micro- and Millimetre Wave Components," Molecular Crystals And Liquid Crystals 610, 173–186 (2015).

    Article  Google Scholar 

  5. X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, et al., "Self-polarizing terahertz liquid crystal phase shifter," Aip Advances 1 (2011).

  6. S. Bildik, S. Dieter, C. Fritzsch, W. Menzel, and R. Jakoby, "Reconfigurable Folded Reflectarray Antenna Based Upon Liquid Crystal Technology," Ieee Transactions on Antennas And Propagation 63, 122–132 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  7. S. J. Ge, J. C. Liu, P. Chen, W. Hu, and Y. Q. Lu, "Tunable terahertz filter based on alternative liquid crystal layers and metallic slats," Chinese Optics Letters 13, (2015).

  8. N. Vieweg, N. Born, I. Al-Naib, and M. Koch, "Electrically Tunable Terahertz Notch Filters," Journal Of Infrared Millimeter And Terahertz Waves 33, 327–332 (2012).

    Article  Google Scholar 

  9. B. Vasic, D. C. Zografopoulos, G. Isic, R. Beccherelli, and R. Gajic, "Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals," Nanotechnology 28 (2017).

  10. D. C. Zografopoulos and R. Beccherelli, "Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching," Scientific Reports 5 (2015).

  11. L. Yang, F. Fan, M. Chen, X. Z. Zhang, and S. J. Chang, "Active terahertz metamaterials based on liquid-crystal induced transparency and absorption," Optics Communications 382, 42–48 (2017).

    Article  Google Scholar 

  12. G. Perez-Palomino, J. A. Encinar, M. Barba, and E. Carrasco, "Design and evaluation of multi-resonant unit cells based on liquid crystals for reconfigurable reflectarrays," IEC Microwaves Antennas & Propagation, 6, 348–354 (2012).

    Article  Google Scholar 

  13. R. Florencio, J. Encinar, R. R. Boix, and G. Perez-Palomino, "Dual-polarisation reflectarray made of cells with two orthogonal sets of parallel dipoles for bandwidth and cross-polarisation improvement," Microwaves, Antennas & Propagation, IET 8, 1389–1397 (2014).

    Article  Google Scholar 

  14. S. Bildik, C. Fritzsch, A. Moessinger, and R. Jakoby, "Tunable liquid crystal reflectarray with rectangular elements," in Microwave Conference, 2010 German, 1–4 (2010).

    Google Scholar 

  15. R. Marin, A. Moessinger, F. Goelden, S. Mueller, and R. Jakoby, "77 GHz Reconfigurable Reflectarray with Nematic Liquid Crystal," in The Second European Conference on Antennas and Propagation, EuCAP 2007, 1–5(2007).

    Google Scholar 

  16. G. Perez-Palomino, M. Barba, J. A. Encinar, R. Cahill, R. Dickie, P. Baine, et al., "Design and Demonstration of an Electronically Scanned Reflectarray Antenna at 100GHz Using Multiresonant Cells Based on Liquid Crystals," IEEE Transactions on Antennas and Propagation 63, 3722–3727 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  17. G. Perez-Palomino, J. A. Encinar, R. Dickie, and R. Cahill, "Preliminary design of a liquid crystal-based reflectarray antenna for beam-scanning in THz," in Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE, 2277–2278 (2013).

    Google Scholar 

  18. C. A. Balanis, ‘Antenna theory’, Wiley, 2005, 3rd edn, pp. 816–820.

  19. H. B. Lu, S. C. Jing, T. Y. Xia, J. Yang, Z. P. Yin, and G. S. Deng, "Measurement of LC dielectric constant at lower terahertz region based on metamaterial absorber," IEICE Electronics Express, 14, 20170469 (2017).

    Article  Google Scholar 

  20. G. Perez-Palomino, R. Florencio, J. A. Encinar, M. Barba, R. Dickie, R. Cahill, et al., "Accurate and Efficient Modeling to Calculate the Voltage Dependence of Liquid Crystal-Based Reflectarray Cells," IEEE Transactions on Antennas and Propagation, 62, 2659–2668, (2014).

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 51607050), the Fundamental Research Funds for the Central Universities (Grant No. JD2017JGPY0006), and the Sichuan Science and Technology Support Project (No. 2016GZ0250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiping Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Xia, T., Jing, S. et al. Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal. J Infrared Milli Terahz Waves 39, 439–446 (2018). https://doi.org/10.1007/s10762-018-0469-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0469-3

Keywords

Navigation