Abstract
We have developed a millimeter-wave electron-spin-resonance (ESR) measurement system using a 3He-4He dilution refrigerator for the ultralow-temperature range below 1 K. The currently available frequency range is 125–130 GHz. This system is based on a Fabry-Pérot-type resonator (FPR) that is composed of two mirrors. The frequency can be changed by adjusting the distance between the mirrors using a piezoelectric actuator installed at the bottom of the resonator. A homodyne detection system with an InSb detector is built into the low-temperature section of the 3He-4He dilution refrigerator; this system provides high sensitivity. Using this system, we performed ESR measurements on a Heisenberg quantum-spin chain—copper pyrazine dinitrate, Cu(C4H4N2)(NO3)2—over the temperature range from 6.6 down to 0.25 K. The ESR lines change continuously with decreasing temperature. Our results suggest that the ESR spectrum of copper pyrazine dinitrate may be useful as a temperature sensor for the very low-temperature range.
This is a preview of subscription content, access via your institution.









References
- 1.
C.P. Slichter, Principles of Magnetic Resonance with Example from Solid State Physics, (Harper&Row Publications Inc., New York, 1963)
- 2.
A. Abragam, The Principles of Nuclear Magnetism, (Clarendon Press, Oxford, 1961).
- 3.
B. Cowan, Nuclear Magnetic Resonance and Relaxation, (Cambridge University Press, Cambridge, 1997)
- 4.
R.S. Alger, Electron Paramagnetic resonance: Techniques and Applications, 2nd edn. (Wiley, New Jersey, 1968)
- 5.
C.P. Poole Jr, Electron spin resonance, 2nd edn. (Dover Publications Inc., New York, 1983)
- 6.
A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, (Dover Publications, 1986).
- 7.
L. Balents, Nature 464, 11 (2010)
- 8.
H. Okura, K. Ishida, Y. Kawasaki, Y. Kitaoka, Y. Yamamoto, Y. Miyako, T. Fukuhara, K. Maezawa, Physica B 281-282, 61 (2000).
- 9.
Y. Fujii, T. Goto, K. Awaga, T. Okuno, Y. Sasaki, T. Mizusaki, J. Magn. Magn. Mater. 177-181, 991, (1998).
- 10.
T. Itou, A. Oyamada, S. Maegawa, R. Kato, Nature Physics 6, 673 (2010).
- 11.
M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zheludev, and M. Horvatić, Phys. Rev. Lett. 118, 167206 (2017).
- 12.
A. Koda, W. Higemoto, R. Kadono, K. Ishida, Y. Kitaoka, C. Geibel, F. Steglich, Physica B 281-282, 16 (2001).
- 13.
F. Xiao, J. S. Möller, T. Lancaster, R. C. Williams, F. L. Pratt, S. J. Blundell, D. Ceresoli, A. M. Barton, J. L. Manson: Phys. Rev. B 91, 144417 (2015).
- 14.
K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 41, 475 (1976)
- 15.
K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 44, 757 (1978)
- 16.
K. Koyama, M. Yoshida, T. Sakon, D. X. Li, T. Suzuki, M. Motokawa, J. Phys. Soc. Jpn. 69, 3425 (2000)
- 17.
M. Mola, S. Hill, P. Goy, M. Gross, Rev. Sci. Instrum. 71, 186 (2000)
- 18.
R. N. Ruby, H. Benoit, P. L. Scott, C. D. Jeferies, Bull. Am. Phys. Soc. Series II 6, 512 (1962)
- 19.
V. B. Fedorov, Cryogenics 5, 911 (1965)
- 20.
M. Hagiwara, T. Kashiwagi, H. Yashiro, T. Umeno, T. Ito, T. Sano, J. Phys.: Conf. Ser. 150, 012015 (2009)
- 21.
T. Sakon, H. Nojiri, K. Koyama, T. Asano, Y. Ajiro, M. Motokawa, J. Phys. Soc. Jpn. 72, 140 (2003)
- 22.
T. Asano, H. Nojiri, Y. Inagaki, J.P. Boucher, T. Sakon, Y. Ajiro, M. Motokawa, Phys. Rev. Lett. 84, 5880 (2000)
- 23.
T. Sakon, H. Nojiri, K. Koyama, T. Asano, Y. Ajiro, M. Motokawa, J. Phys. Soc. Jpn. 70, 2259 (2001)
- 24.
A. Santro, A.D. Mighell, C.W. Reimann, Acta Cryst. B26, 979 (1970)
- 25.
G. Mennenga, L.J. de Jongh, W.J. Huiskamp, J. Reedijk, J. Magn. Magn. Mater. 44, 89 (1984)
- 26.
R.P. Hammar, M.B. Stone, D.H. Reich, C. Broholm, P.J. Gibson, M.M. Turnbull, C.P. Landee, M. Oshikawa, Phys. Rev. B 59, 2 (1999)
- 27.
A.A. Validov, M. Ozerov, J. Wosnitza, S.A. Zvyagin, M.M. Turnbull, C.P. Landee, G.B. Teitel’baum, J. Phys.:Cond. Matter 26, 026003 (2014)
- 28.
T. Lancaster, S.J. Blundell, M.L. Brooks, P.J. Baker, F.L. Pratt, J.L. Manson, C.P. Landee, C. Baines, Phys. Rev. Lett. B 73, 020410 (2006)
- 29.
S. Vasilyev, J. Järvinen, E. Tjukanoff, A. Kharitonov, S. Jaakkola, Rev. Sci. Instrum. 75, 94 (2004)
- 30.
S.A. Vasilyev, A.Ya. Katunin, A.I. Safonov, A.V. Frolov, E. Tjukanov, Appl. Magn. Reson. 3, 1061 (1992)
- 31.
B.W. Statt, W. N. Hardy, A. J. Berlinsky, E. Klein, J. Low Temp. Phys. 61, 471 (1985)
- 32.
A. Fukuda, H. Takenaka, and T. Mizusaki, J. Low Temp. Phys. 121, 737 (2000)
- 33.
A. Fukuda, H. Takenaka, T. Ohmi and T. Mizusaki, J. Low Temp. Phys. 126, 127 (2001)
- 34.
H. Kogelnik, T. Li, Proc. IEEE 54, 10 (1966)
- 35.
H. Yashiro, T. Kashiwagi, M. Horitani, F. Hobo, H. Hori, M. Hagiwara, J. Phys.: Conf. Ser. 51, 576 (2006)
- 36.
Y. Ishikawa, K. Ohya, Y. Fujii, A. Fukuda, S. Miura, S. Mitsudo, H. Yamamori, H. Kikuchi, J. Infrared. Millim. Terahertz Waves, under article submission.
- 37.
V. P. Peshkov, Sov. Phys. JETP 24, 1227 (1970)
- 38.
F. Pobell, Matter and Methods at Low Temperatures (Springer-Verlag, Berlin, 1992) ch. 7.4.
- 39.
Y. Ishikawa, K. Ohya, S. Miura, Y. Fujii, S. Mistudo, T. Mizusaki, A. Fukuda, A. Matsubara, H. Kikuchi, H. Yamamori, S. Lee, S. Vasiliev, J. Phys.: Conf. Ser., in press
Acknowledgments
The authors express sincere thanks to Dr. S. Vasiliev (University of Turku, Finland) for his great effort on constructing ESR system on DR and giving advice on making FPR.
Funding
This work is partly supported by JSPS KAKENHI Grant Number 17K05514 and 26400331 and by the Cooperative Research Program of Research Center for Development of Far-Infrared Region, University of Fukui (No. H27FIRDM011E, H28FIRDM024A, H29FIRDM015B).
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ishikawa, Y., Ohya, K., Fujii, Y. et al. Development of a Millimeter-Wave Electron-Spin-Resonance Measurement System for Ultralow Temperatures and Its Application to Measurements of Copper Pyrazine Dinitrate. J Infrared Milli Terahz Waves 39, 288–301 (2018). https://doi.org/10.1007/s10762-017-0460-4
Received:
Accepted:
Published:
Issue Date:
Keywords
- Millimeter wave
- Ultralow temperature
- ESR
- Fabry-Pérot-type resonator
- Copper pyrazine dinitrate
- Quantum-spin chain
- Temperature sensor from ESR