Development of a Millimeter-Wave Electron-Spin-Resonance Measurement System for Ultralow Temperatures and Its Application to Measurements of Copper Pyrazine Dinitrate

Abstract

We have developed a millimeter-wave electron-spin-resonance (ESR) measurement system using a 3He-4He dilution refrigerator for the ultralow-temperature range below 1 K. The currently available frequency range is 125–130 GHz. This system is based on a Fabry-Pérot-type resonator (FPR) that is composed of two mirrors. The frequency can be changed by adjusting the distance between the mirrors using a piezoelectric actuator installed at the bottom of the resonator. A homodyne detection system with an InSb detector is built into the low-temperature section of the 3He-4He dilution refrigerator; this system provides high sensitivity. Using this system, we performed ESR measurements on a Heisenberg quantum-spin chain—copper pyrazine dinitrate, Cu(C4H4N2)(NO3)2—over the temperature range from 6.6 down to 0.25 K. The ESR lines change continuously with decreasing temperature. Our results suggest that the ESR spectrum of copper pyrazine dinitrate may be useful as a temperature sensor for the very low-temperature range.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    C.P. Slichter, Principles of Magnetic Resonance with Example from Solid State Physics, (Harper&Row Publications Inc., New York, 1963)

    Google Scholar 

  2. 2.

    A. Abragam, The Principles of Nuclear Magnetism, (Clarendon Press, Oxford, 1961).

    Google Scholar 

  3. 3.

    B. Cowan, Nuclear Magnetic Resonance and Relaxation, (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  4. 4.

    R.S. Alger, Electron Paramagnetic resonance: Techniques and Applications, 2nd edn. (Wiley, New Jersey, 1968)

    Google Scholar 

  5. 5.

    C.P. Poole Jr, Electron spin resonance, 2nd edn. (Dover Publications Inc., New York, 1983)

    Google Scholar 

  6. 6.

    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, (Dover Publications, 1986).

  7. 7.

    L. Balents, Nature 464, 11 (2010)

    Article  Google Scholar 

  8. 8.

    H. Okura, K. Ishida, Y. Kawasaki, Y. Kitaoka, Y. Yamamoto, Y. Miyako, T. Fukuhara, K. Maezawa, Physica B 281-282, 61 (2000).

    Article  Google Scholar 

  9. 9.

    Y. Fujii, T. Goto, K. Awaga, T. Okuno, Y. Sasaki, T. Mizusaki, J. Magn. Magn. Mater. 177-181, 991, (1998).

    Article  Google Scholar 

  10. 10.

    T. Itou, A. Oyamada, S. Maegawa, R. Kato, Nature Physics 6, 673 (2010).

    Article  Google Scholar 

  11. 11.

    M. Jeong, H. Mayaffre, C. Berthier, D. Schmidiger, A. Zheludev, and M. Horvatić, Phys. Rev. Lett. 118, 167206 (2017).

    Article  Google Scholar 

  12. 12.

    A. Koda, W. Higemoto, R. Kadono, K. Ishida, Y. Kitaoka, C. Geibel, F. Steglich, Physica B 281-282, 16 (2001).

    Article  Google Scholar 

  13. 13.

    F. Xiao, J. S. Möller, T. Lancaster, R. C. Williams, F. L. Pratt, S. J. Blundell, D. Ceresoli, A. M. Barton, J. L. Manson: Phys. Rev. B 91, 144417 (2015).

    Article  Google Scholar 

  14. 14.

    K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 41, 475 (1976)

    Article  Google Scholar 

  15. 15.

    K. Oshima, K. Okuda, M. Date, J. Phys. Soc. Jpn. 44, 757 (1978)

    Article  Google Scholar 

  16. 16.

    K. Koyama, M. Yoshida, T. Sakon, D. X. Li, T. Suzuki, M. Motokawa, J. Phys. Soc. Jpn. 69, 3425 (2000)

    Article  Google Scholar 

  17. 17.

    M. Mola, S. Hill, P. Goy, M. Gross, Rev. Sci. Instrum. 71, 186 (2000)

    Article  Google Scholar 

  18. 18.

    R. N. Ruby, H. Benoit, P. L. Scott, C. D. Jeferies, Bull. Am. Phys. Soc. Series II 6, 512 (1962)

    Google Scholar 

  19. 19.

    V. B. Fedorov, Cryogenics 5, 911 (1965)

    Article  Google Scholar 

  20. 20.

    M. Hagiwara, T. Kashiwagi, H. Yashiro, T. Umeno, T. Ito, T. Sano, J. Phys.: Conf. Ser. 150, 012015 (2009)

    Google Scholar 

  21. 21.

    T. Sakon, H. Nojiri, K. Koyama, T. Asano, Y. Ajiro, M. Motokawa, J. Phys. Soc. Jpn. 72, 140 (2003)

    Article  Google Scholar 

  22. 22.

    T. Asano, H. Nojiri, Y. Inagaki, J.P. Boucher, T. Sakon, Y. Ajiro, M. Motokawa, Phys. Rev. Lett. 84, 5880 (2000)

    Article  Google Scholar 

  23. 23.

    T. Sakon, H. Nojiri, K. Koyama, T. Asano, Y. Ajiro, M. Motokawa, J. Phys. Soc. Jpn. 70, 2259 (2001)

    Article  Google Scholar 

  24. 24.

    A. Santro, A.D. Mighell, C.W. Reimann, Acta Cryst. B26, 979 (1970)

    Article  Google Scholar 

  25. 25.

    G. Mennenga, L.J. de Jongh, W.J. Huiskamp, J. Reedijk, J. Magn. Magn. Mater. 44, 89 (1984)

    Article  Google Scholar 

  26. 26.

    R.P. Hammar, M.B. Stone, D.H. Reich, C. Broholm, P.J. Gibson, M.M. Turnbull, C.P. Landee, M. Oshikawa, Phys. Rev. B 59, 2 (1999)

    Article  Google Scholar 

  27. 27.

    A.A. Validov, M. Ozerov, J. Wosnitza, S.A. Zvyagin, M.M. Turnbull, C.P. Landee, G.B. Teitel’baum, J. Phys.:Cond. Matter 26, 026003 (2014)

    Google Scholar 

  28. 28.

    T. Lancaster, S.J. Blundell, M.L. Brooks, P.J. Baker, F.L. Pratt, J.L. Manson, C.P. Landee, C. Baines, Phys. Rev. Lett. B 73, 020410 (2006)

    Article  Google Scholar 

  29. 29.

    S. Vasilyev, J. Järvinen, E. Tjukanoff, A. Kharitonov, S. Jaakkola, Rev. Sci. Instrum. 75, 94 (2004)

    Article  Google Scholar 

  30. 30.

    S.A. Vasilyev, A.Ya. Katunin, A.I. Safonov, A.V. Frolov, E. Tjukanov, Appl. Magn. Reson. 3, 1061 (1992)

    Article  Google Scholar 

  31. 31.

    B.W. Statt, W. N. Hardy, A. J. Berlinsky, E. Klein, J. Low Temp. Phys. 61, 471 (1985)

    Article  Google Scholar 

  32. 32.

    A. Fukuda, H. Takenaka, and T. Mizusaki, J. Low Temp. Phys. 121, 737 (2000)

    Article  Google Scholar 

  33. 33.

    A. Fukuda, H. Takenaka, T. Ohmi and T. Mizusaki, J. Low Temp. Phys. 126, 127 (2001)

    Article  Google Scholar 

  34. 34.

    H. Kogelnik, T. Li, Proc. IEEE 54, 10 (1966)

    Article  Google Scholar 

  35. 35.

    H. Yashiro, T. Kashiwagi, M. Horitani, F. Hobo, H. Hori, M. Hagiwara, J. Phys.: Conf. Ser. 51, 576 (2006)

    Google Scholar 

  36. 36.

    Y. Ishikawa, K. Ohya, Y. Fujii, A. Fukuda, S. Miura, S. Mitsudo, H. Yamamori, H. Kikuchi, J. Infrared. Millim. Terahertz Waves, under article submission.

  37. 37.

    V. P. Peshkov, Sov. Phys. JETP 24, 1227 (1970)

    Google Scholar 

  38. 38.

    F. Pobell, Matter and Methods at Low Temperatures (Springer-Verlag, Berlin, 1992) ch. 7.4.

    Google Scholar 

  39. 39.

    Y. Ishikawa, K. Ohya, S. Miura, Y. Fujii, S. Mistudo, T. Mizusaki, A. Fukuda, A. Matsubara, H. Kikuchi, H. Yamamori, S. Lee, S. Vasiliev, J. Phys.: Conf. Ser., in press

Download references

Acknowledgments

The authors express sincere thanks to Dr. S. Vasiliev (University of Turku, Finland) for his great effort on constructing ESR system on DR and giving advice on making FPR.

Funding

This work is partly supported by JSPS KAKENHI Grant Number 17K05514 and 26400331 and by the Cooperative Research Program of Research Center for Development of Far-Infrared Region, University of Fukui (No. H27FIRDM011E, H28FIRDM024A, H29FIRDM015B).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Y. Ishikawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ishikawa, Y., Ohya, K., Fujii, Y. et al. Development of a Millimeter-Wave Electron-Spin-Resonance Measurement System for Ultralow Temperatures and Its Application to Measurements of Copper Pyrazine Dinitrate. J Infrared Milli Terahz Waves 39, 288–301 (2018). https://doi.org/10.1007/s10762-017-0460-4

Download citation

Keywords

  • Millimeter wave
  • Ultralow temperature
  • ESR
  • Fabry-Pérot-type resonator
  • Copper pyrazine dinitrate
  • Quantum-spin chain
  • Temperature sensor from ESR