Efficient Terahertz Plasmonic Absorbers with V-Grooves Using Highly Doped Silicon Substrate and Simple Wet-Etching Techniques



We experimentally demonstrate that at terahertz frequencies perfect plasmonic absorbers made from a 3D V-groove array in a highly doped silicon wafer can be easily realized using simple wet-etching process. The surface plasmon modes can be excited by the V-groove array and get decayed when they propagate along the silicon surface and enter the grooves, inducing a broadband near-zero dip in the reflection spectra. The reflection spectrum of the fabricated absorber is characterized using a terahertz time-domain spectroscopy system, and the experimental results are in good agreement with numerical simulations. The high performance including high absorptivity and large bandwidth together with the easy fabrication processes presented in this paper make this plasmonic absorber promising for a wide range of practical applications in terahertz regime.


Terahertz absorber Surface plasmon Spectroscopy Microstructure fabrication 



This work was supported by Zhejiang Provincial Natural Science Foundation of China (LY15F050008). Z. H. also acknowledges the financial support from the State key laboratory of Millimeter wave (K201624).


  1. 1.
    R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue, Phys. Med. Biol., vol. 47, no. 21, pp. 3853–3863, 2002.CrossRefGoogle Scholar
  2. 2.
    M. Tonouchi, Cutting-edge terahertz technology, Nat. Photonics, vol. 1 pp. 97–105, 2002.CrossRefGoogle Scholar
  3. 3.
    M. C. Beard, G. M. Turner, C. A. Schmuttenmaer, Terahertz spectroscopy, J. Phys. Chem. B., vol. 106, no. 29, pp. 7146–7159, 2002.CrossRefGoogle Scholar
  4. 4.
    R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, Capture of a terahertz wave in a photonic-crystal slab, Nature Photon., vol. 8, no. 8, pp. 657–663, 2014.CrossRefGoogle Scholar
  5. 5.
    D. S. Wilbert, M. P. Hokmabadi, P. Kung, and S. M. Kim, Equivalent-Circuit Interpretation of the Polarization Insensitive Performance of THz Metamaterial Absorbers, IEEE T. THz. Sci. Techn., vol. 3, no. 6, pp. 846–850, 2013.CrossRefGoogle Scholar
  6. 6.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Berlin Heidelberg, 1988).CrossRefGoogle Scholar
  7. 7.
    M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, Efficient absorption of visible radiation by gap plasmon resonators, Opt. Express, vol. 20, no. 12, pp. 13311–13319, 2012.CrossRefGoogle Scholar
  8. 8.
    T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, Resonant Plasmon Nanofocusing by Closed Tapered Gaps, Nano Lett., vol. 10, no. 1, p. 291, 2010.CrossRefGoogle Scholar
  9. 9.
    T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves, Nat. Commun., vol. 3, no. 1, p. 969, 2012.CrossRefGoogle Scholar
  10. 10.
    T. Wang, S. Shen, J. Liu, Y. Zhang, and Z. Han, Experimental realization of perfect terahertz plasmonic absorbers using highly doped silicon substrate and CMOS-compatible techniques, Opt. Mater. Express, vol. 6, no. 2, p. 523, 2016.CrossRefGoogle Scholar
  11. 11.
    M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, and X. Luo, Engineering heavily doped silicon for broadband absorber in the terahertz regime, Opt. Express., 20, 25513–25519 (2012).CrossRefGoogle Scholar
  12. 12.
    W. Withayachumnankul, C. M. Shah, C. Fumeaux, B. S. Y. Ung, W. J. Padilla, M. Bhaskaran, D. Abbott, and S. Sriram, Plasmonic Resonance toward Terahertz Perfect Absorbers, Acs Photonics, vol. 1, no. 7, pp. 625–630, 2014.CrossRefGoogle Scholar
  13. 13.
    Y. Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R. Z. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, Ultrabroadband Plasmonic Absorber for Terahertz Waves, Adv. Opt. Mater, vol. 3, no. 3, pp. 376–380, 2015.CrossRefGoogle Scholar
  14. 14.
    M. W. Vogel, and D. K. Gramotnev, Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons, J. Appl. Phys., vol. 107, no. 4, p. 189, 2010.CrossRefGoogle Scholar
  15. 15.
    E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, Guiding and focusing of electromagnetic fields with wedge plasmon polaritons, Phys. Rev. Lett., vol. 100, no. 2, p. 023901, 2008.CrossRefGoogle Scholar
  16. 16.
    X. Li, T. Jiang, L. Shen, and X. Deng, Subwavelength guiding of channel plasmon polaritons by textured metallic grooves at telecom wavelengths, Appl. Phys. Lett., vol. 102, no. 3, p. 824, 2013.CrossRefGoogle Scholar
  17. 17.
    S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature., vol. 440, no. 7083, p. 508, 2006.CrossRefGoogle Scholar
  18. 18.
    S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Channel plasmon-polariton guiding by subwavelength metal grooves, Phys. Rev. Lett., vol. 95, no. 4, p. 046802, 2005.CrossRefGoogle Scholar
  19. 19.
    S. Li, M. M. Jadidi, T. E. Murphy, and G. Kumar, Terahertz surface plasmon polaritons on a semiconductor surface structured with periodic V-grooves, Opt. Express, vol. 21, no. 6, pp. 7041–7049, 2013.CrossRefGoogle Scholar
  20. 20.
    D. M. Caughey, and R. E. Thomas, Carrier mobilities in silicon empirically related to doping and field, Proc. IEEE, vol. 55, no. 12, pp. 2192–2193, 2005.CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, and Z. Han,Efficient and broadband Terahertz plasmonic absorbers using highly doped Si as the plasmonic material, Aip Adv., vol. 5, no. 1, p. 26, 2015.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Terahertz PhotonicsChina Jiliang UniversityHangzhouChina
  2. 2.State Key Laboratory of Millimeter WavesSoutheast UniversityNanjingChina

Personalised recommendations