Compact Tunable Narrowband Terahertz-Wave Source Based on Difference Frequency Generation Pumped by Dual Fiber Lasers in MgO:LiNbO3

  • Yoshio Wada
  • Takumi Satoh
  • Yasuhiro Higashi
  • Yoshiharu Urata


We demonstrate a high-average-power, single longitudinal-mode, and tunable terahertz (THz)-wave source based on difference frequency generation (DFG) in a MgO:LiNbO3 (MgO:LN) crystal. The waves for DFG are generated using a pair of Yb-doped pulsed fiber lasers with a master oscillator power fiber amplifier configuration. The average power of the THz-wave output reaches 450 μW at 1.07 THz (280 μm) at a linewidth of 7.2 GHz, and the tunability ranges from 0.35 to 1.07 THz under the pulse repetition frequency of 500 kHz. A short burn-in test of the THz wave is also carried out, and the output power stability is within ± 5% of the averaged power without any active stabilizing technique. The combination of MgO:LN-DFG and stable and robust fiber laser sources is highly promising for the development of high-average-power THz-wave sources, particularly in the high transmission sub-THz region. This approach may enable new applications of THz-wave spectroscopy in imaging and remote sensing.


High-average-power Tunable terahertz-wave source Difference frequency generation Yb-doped pulsed fiber laser 


  1. 1.
    M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, pp. 97–105 (2007).CrossRefGoogle Scholar
  2. 2.
    M. Sherwin, “Terahertz power,” Nature 420, pp. 131–132 (2002).CrossRefGoogle Scholar
  3. 3.
    Y.Kado, T. Nagatsuma, “Exploring Sub-THz Waves for Communications, Imaging, and Gas Sensing,” Proc. PIERS 2009 in Beijing, 42 (2009)Google Scholar
  4. 4.
    G. Ok, K. Park, H. Chun, H. Chang, N. Lee, S. Choi, “High-performance sub-terahertz transmission imaging system for food inspection,” Biomed. Opt. Express, 6, 1929 (2015)CrossRefGoogle Scholar
  5. 5.
    R. Han, M. Emadi, H. Aghasi, A. Cathelin, “A SiGe Terahertz Heterodyne Imaging Transmitter With 3.3 mW Radiated Power and Fully-Integrated Phase-Locked Loop,” IEEE J. Solid-States Circuits, 50, 12, 1 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Suzuki, M. Shiraishi, H. Shibayama, M. Asada, “High-Power Operation of Terahertz Oscillators With Resonant Tunneling Diodes Using Impedance-Matched Antennas and Array Configuration,” IEEE J. Sel. Topics Quantum Electron., 19, 8500108 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Shikata, K. Kawase, K. Karino, T. Taniuchi, and H. Ito, “Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals,” IEEE Trans. Microw. Theory Tech. 48(4), 653–661 (2000).CrossRefGoogle Scholar
  8. 8.
    S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, H. Minamide, “Ultrabright continuously tunable terahertz-wave generation at room temperature,” Sci. Rep. 4, 5045 (2014).CrossRefGoogle Scholar
  9. 9.
    D. Creeden, J. McCarthy, P. Ketteridge, P. Schunemann, T. Southward, J. Komiak, E. Chicklis ,“ Compact, high average power, fiber-pumped terahertz source for active real-time imaging of concealed objects,” Opt. Express. 15, 6478 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Yoshio Wada
    • 1
  • Takumi Satoh
    • 1
  • Yasuhiro Higashi
    • 1
  • Yoshiharu Urata
    • 2
  1. 1.Ricoh Company Ltd.NatoriJapan
  2. 2.Phluxi, Inc.TokyoJapan

Personalised recommendations