Advertisement

Robust Sub-harmonic Mixer at 340 GHz Using Intrinsic Resonances of Hammer-Head Filter and Improved Diode Model

  • Cheng Wang
  • Yue HeEmail author
  • Bin Lu
  • Jun Jiang
  • Li Miao
  • Xian-Jin Deng
  • Yong-zhong Xiong
  • Jian Zhang
Article

Abstract

This paper presents a sub-harmonic mixer at 340 GHz based on anti-parallel Schottky diodes (SBDs). Intrinsic resonances in low-pass hammer-head filter have been adopted to enhance the isolation for different harmonic components, while greatly minimizing the transmission loss. The application of new DC grounding structure, impedance matching structure, and suspended micro-strip mitigates the negative influences of fabrication errors from metal cavity, quartz substrate, and micro-assembly. An improved lumped element equivalent circuit model of SBDs guarantees the accuracy of simulation, which takes current-voltage (I/V) behavior, capacitance-voltage (C/V) behavior, carrier velocity saturation, DC series resistor, plasma resonance, skin effect, and four kinds of noise generation mechanisms into consideration thoroughly. The measurement indicates that with local oscillating signal of 2 mW, the lowest double sideband conversion loss is 5.5 dB at 339 GHz; the corresponding DSB noise temperature is 757 K. The 3 dB bandwidth of conversion loss is 50 GHz from 317 to 367 GHz.

Keywords

Terahertz Sub-harmonic mixer Hammer-head filter Schottky diode Device modeling 

Notes

Acknowledgments

The authors would like to thank Cheng-Li Xie, Wei Huang, Hai-Long Hao, Cheng-Wei Li, and Da-Long Zhou in IEE CAEP for their support on module fabrication and testing.

References

  1. 1.
    L. A. Samoska, “An Overview of Solid-State Integrated Circuit Amplifiers in the Submillimeter-Wave and THz Regime”, IEEE Trans. THz Sci. Technol., vol. 1, no. 1, pp. 9–24, 2011.CrossRefGoogle Scholar
  2. 2.
    Yu Yan et al., “340 GHz Integrated Receiver in 250 nm InP DHBT Technology”, IEEE Trans. THz Sci. Technol., vol. 2, no. 3, pp. 306–314, 2012.MathSciNetCrossRefGoogle Scholar
  3. 3.
    W. Y. Ali-Ahmad, “A 335 GHz quasi-optical Schottky receiver”, IEEE Microw. Guided Wave Lett., vol. 4, no. 2, pp. 37–39, 1994.CrossRefGoogle Scholar
  4. 4.
    E. E. M. Woestenburg, “Low-Noise 320-360GHz Cryogenically cooled Waveguide Schottky Diode Mixer”, Electronics Letter, vol. 22, no. 24, pp. 1305–1307, 1986.CrossRefGoogle Scholar
  5. 5.
    B. Thomas et al., “A Low-Noise Fixed-Tuned 300–360-GHz Sub-Harmonic Mixer Using Planar Schottky Diodes”, IEEE Microw. Compon. Lett,. vol. 15, no. 12, pp. 865–867, 2005.CrossRefGoogle Scholar
  6. 6.
    P. J. Sobis et al., “A Broadband, Low Noise, Integrated 340 GHz Schottky Diode Receiver”, IEEE Microw. Compon. Lett,. vol. 22, no. 7, pp. 366–368, 2012.CrossRefGoogle Scholar
  7. 7.
    B. Thomas et al., “A Combined 380 GHz Mixer/Doubler Circuit Based on Planar Schottky Diodes”, IEEE Microw. Compon. Lett,. vol. 18, no. 5, pp. 353–355, 2008.CrossRefGoogle Scholar
  8. 8.
    P. J. Sobis et al., “A Low VSWR 2SB Schottky Receiver”, IEEE Trans. THz Sci. Technol., vol. 1, no. 2, pp. 403–411, 2011.CrossRefGoogle Scholar
  9. 9.
    T. Waliwander et al., “Sub-millimeter Wave 183 GHz and 366 GHz MMIC Membrane Sub-harmonic Mixers”, in Microwave Symposium Digest (MTT), 2011 I.E. MTT-S International, 2011, pp. 1–4.Google Scholar
  10. 10.
    V. Drakinskiy, “Terahertz GaAs Schottky diode mixer and multiplier MIC’s based on e-beam technology”, in Indium Phosphide and Related Materials (IPRM), 2013 International Conference on, 2013, pp. 1–2.Google Scholar
  11. 11.
    I. Mehdi et al., “Improved 240-GHz Subharmonically Pumped Planar Schottky Diode Mixers for Space-Borne Applications”, IEEE Trans. Microw. Theory Techn., vol. 46, no. 12, pp. 2036–2042, 1998CrossRefGoogle Scholar
  12. 12.
    O. Cojocari et al., “Schottky-based THz-MIC-s”, in Proceedings of the 6th European Microwave Integrated Circuits Conference, 2011, pp. 232–235.Google Scholar
  13. 13.
    J. L. Hesler, “Planar Schottky Diodes In Submillimeter-Wavelength Waveguide Receivers”, Ph.D. dissertation, School of Engineering and Applied Science, Univ. of Virginia, Charlottesville, VA, 1996.Google Scholar
  14. 14.
    D. Pardo, “An Assessment of Available Models for the Design of Schottky-Based Multipliers Up to THz Frequencies”, IEEE Trans. THz Sci. Technol., vol. 4, no. 2, pp. 277–287, 2014.MathSciNetCrossRefGoogle Scholar
  15. 15.
    S. M. SZE, Kwok K. Ng, “Metal-Semiconductor Contacts”, in Physics of Semiconductor Devices, 3rd ed, Hoboken, New Jersey: John Wiley & Sons, Inc., 2007, pp. 134–196.Google Scholar
  16. 16.
    J. T. Louhi et al., “On the Modeling and Optimization of Schottky Varactor Frequency Multipliers at Submillimeter Wavelength”, IEEE Trans. Microw. Theory Techn., Vol. 43, No. 4, pp. 922–926. 1995.CrossRefGoogle Scholar
  17. 17.
    John A. Copeland, “Diode Edge Effect on Dloping-Profile Measurements”, IEEE Trans. Electron Devices, Vol. ED-17, No. 5, pp. 404–407, 1970.CrossRefGoogle Scholar
  18. 18.
    D. W. Porterfield, “Millimeter-wave planar varactor frequency doublers”, Ph.D. dissertation, School of Engineering and Applied Science, Univ. of Virginia, Charlottesville, 1998.Google Scholar
  19. 19.
    B. J. Rizzi, “Planar varactor diodes for millimeter and submillimeter wavelengths”, Ph.D. dissertation, School of Engineering and Applied Science, Univ. of Virginia, Charlottesville, 1994.Google Scholar
  20. 20.
    E. L. Kollberg et al., “Current Saturation in Submillimeter Wave Varactors”, in 2nd International Symposium on Space Terahertz Technology, 1992, pp. 306–322.Google Scholar
  21. 21.
    J. East, “Performance Limitation of Varactor Multipliers”, in 4th International Symposium on Space Terahertz Technology, 1993, pp. 312–325.Google Scholar
  22. 22.
    K. S. Champlin, G. Eisenstein, “Cutoff frequency of submillimeter Schottky-barrier diodes”, IEEE Trans. Microw. Theory Techn., Vol. MTT-26, No. 1, pp. 31–34, 1978.CrossRefGoogle Scholar
  23. 23.
    K. Bhaumik et al., “Series Impedance of GaAs Planar Schottky Diodes Operated to 500 GHz”, IEEE Trans. Microw. Theory Techn., Vol. 40, No. 5, pp. 880–885, 1992.CrossRefGoogle Scholar
  24. 24.
    B. Thomas, “Etude et réalisation d’une tête de réception hétérodyne en ondes submillimétrique pour l’étude des atmospheres et surfaces de planets”, PhD dissertation, LERMA-Observatoire de Paris, France, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Microsystem &Terahertz Research Center, Institute of Electronic EngineeringChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations