A 0.4-THz Second Harmonic Gyrotron with Quasi-Optical Confocal Cavity

  • Xiaotong Guan
  • Wenjie Fu
  • Yang Yan


Mode density is very relevant for harmonic gyrotron cavity. Theoretical investigations suggest that quasi-optical confocal waveguide performs low mode density and good mode-selective character. By selecting the appropriate mode and optimizing the cavity parameters, the quasi-optical confocal cavity is suitable for high-harmonic terahertz gyrotron without mode competition. In order to verify the theoretical analysis, a 0.4-THz second harmonic gyrotron has been designed and experimented. Driven by a 40-kV, 4.75-A electron beam and 7.51-T magnetic field, the gyrotron prototype could generate 6.44 kW of output power at 395.35 GHz, which corresponds to an electron efficiency of 3.4%. There is no mode competition between the second harmonic and fundamental observed in the experiments.


THz Harmonic gyrotron Quasi-optical cavity Cylindrical confocal waveguide Mode selection 



We gratefully acknowledge the assistance of Yin Huang and Weirong Deng. This work is supported by the National Natural Science Foundation of China under Grant No. 61401064, National Natural Science Foundation of China under Grant No. 61771096, National Basic Research Program of China under Grant No. 2013CB933603, and by CAEP THz Science and Technology Foundation under Grant No. CAEPTHZ201403.


  1. 1.
    R.A. Lewis, “A review of terahertz sources,” J. Phys. D: Appl. Phys., vol. 47, pp. 374001, 2014.CrossRefGoogle Scholar
  2. 2.
    J. H. Booske, R. J. Dobbs, C. D. Joye, et al., “Vacuum Electronic High Power Terahertz Sources,” IEEE Trans. Terahertz Science and Technology, vol. 1, no. 1, pp. 54–75, 2011.CrossRefGoogle Scholar
  3. 3.
    M. Thumm, “State-of-the-Art of High Power Gyro-Devices and Free Electron Masers”, Update 2016, KIT Scientific Report 7735, Karlsruhe Institute of Technology, (2016).Google Scholar
  4. 4.
    G. S. Nusinovich, M. Thumm, M. I. Petelin, “The Gyrotron at 50 Historical Overview,” J. Infr. Millim. Terahertz Waves, vol. 35, no. 4, pp. 325–381, 2014.CrossRefGoogle Scholar
  5. 5.
    M. Thumm, “Recent Advances in the Worldwide Fusion Gyrotron Development,” IEEE Transactions on Plasma Science, vol. 42, no. 3, pp. 590–599, 2014.CrossRefGoogle Scholar
  6. 6.
    Kumar, Nitin, et al., “A review on the sub-THz/THz gyrotrons,” Infrared Physics & Technology, vol. 76, pp. 38–51, 2016.CrossRefGoogle Scholar
  7. 7.
    M.Y. Glyavin, T. Idehara, S.P. Sabchevski, “Development of THz Gyrotrons at IAP RAS and FIR UF and Their Applications in Physical Research and High-Power THz Technologies,” IEEE Transactions on Terahertz Science Technol., vol. 5, no. 5, pp. 788–797, 2015.CrossRefGoogle Scholar
  8. 8.
    T. Idehara, S. P. Sabchevski, "Gyrotrons for High-Power Terahertz Science and Technology at FIR UF," J. Infr. Milli. Terahertz Waves, vol. 38, no. 1, pp. 62–86, 2017.CrossRefGoogle Scholar
  9. 9.
    W. Fu, X. Guan, et al., “Design and Experiment of a 220/420-GHz Gyrotron for Nondestructive Evaluation,” IEEE Trans. Electron Devices, vol. 61, no. 7, pp. 2531–2537, 2014.CrossRefGoogle Scholar
  10. 10.
    K. R. Chu, “The electron cyclotron maser,” Rev. Modern Phys., vol. 76, no. 2, pp. 489–540, 2004.CrossRefGoogle Scholar
  11. 11.
    M. Yu. Glyavin, A. G. Luchinin, G. Y. Golubiatnikov, "Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field," Physical Review Letters, vol. 100, no. 1, p. 015101, 2008.CrossRefGoogle Scholar
  12. 12.
    T. Saito, et al. "Generation of high power sub-terahertz radiation from a gyrotron with second harmonic oscillation," Physics of Plasmas, vol. 19, no. 6, p. 063106, 2012.CrossRefGoogle Scholar
  13. 13.
    A. C. Torrezan, M. A. Shapiro, J. R. Sirigiri, R. J. Temkin, and R. G. Griffin, “Operation of a continuously frequency-tunable second harmonic CW 330-GHz gyrotron for dynamic nuclear polarization,” IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2777–2783, 2011.CrossRefGoogle Scholar
  14. 14.
    A. C. Torrezan, S. T. Han, I. Mastovsky, et al, “Continuous-Wave Operation of a Frequency-Tunable 460-GHz Second-Harmonic Gyrotron for Enhanced Nuclear Magnetic Resonance,” IEEE Trans. Plasma Science, vol. 38, no. 6, pp. 1150–1159, 2010.CrossRefGoogle Scholar
  15. 15.
    T. Idehara, K. Kosuga, L. Agusu, et al., “Continuously Frequency Tunable High Power Sub-THz Radiation Source—Gyrotron FU CW VI for 600 MHz DNP-NMR Spectroscopy,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 31, no. 7, pp. 775–790, 2010.CrossRefGoogle Scholar
  16. 16.
    E. A. Nanni, A. B. Barnes, R. G. Griffin, and R. J. Temkin, “THz dynamic nuclear polarization NMR,” IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 145–163, 2011.CrossRefGoogle Scholar
  17. 17.
    Hu W., Shapiro M., Kriescher K. E., et al., “140-GHz gyrotron experiments based on a confocal cavity,” IEEE Transactions on Plasma Science, vol. 26, no. 3, pp. 366–374, 1998CrossRefGoogle Scholar
  18. 18.
    J. R. Sirigiri, M. A. Shapiro, and R. J. Temkin, “High-power 140-GHz quasioptical gyrotron traveling-wave amplifier,” Physical Review Letter, vol. 90, pp. 258302-1–258302-4, 2003.CrossRefGoogle Scholar
  19. 19.
    C. D. Joye, M. Shapiro, J. R. Sirigiri, et al., “Demonstration of a 140-GHz 1-kW confocal gyro-traveling-wave amplifier,” IEEE Tran. Electron Devices, vol. 56, no. 5, pp. 818–827, 2001.CrossRefGoogle Scholar
  20. 20.
    Guan X, Chen C, Fu W, et al., “Design of a 220-GHz continuous frequency-tunable gyrotron with quasi-optical cavity” in IEEE International Vacuum Electronics Conference (IVEC). 2015:1–2.Google Scholar
  21. 21.
    Weinstein, L. A., Open Resonators and Open Waveguides, Golem Press, Boulder, 1969.Google Scholar
  22. 22.
    A. L. Schawlow, C. H. Townes, “INFRARED AND OPTICAL MASERS,” Physical Review, vol. 112, no. 6, pp. 45–50, 1958.CrossRefGoogle Scholar
  23. 23.
    W. Fu, X. Guan, and Y. Yan, “High harmonic terahertz confocal gyrotron with nonuniform electron beam,” Physics of Plasmas, vol. 23, p. 013301, 2016.CrossRefGoogle Scholar
  24. 24.
    G. D. Boyd, J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell System Technical Journal, vol. 40, no. 2, pp. 489–508, 1961.CrossRefGoogle Scholar
  25. 25.
    A. V. Gaponov, V. A. Flyagin, A. L. Gol'denberg, G. S. Nusinovich, SH. E. Tsimring, V. G. Usov, S. N. Vlasov, “Powerful millimetre-wave gyrotrons,” International Journal of Electronics, vol. 51, no. 4, pp. 277–302, 1981.CrossRefGoogle Scholar
  26. 26.
    B. G. Danly, R. J. Temkin, “Generalized nonlinear harmonic gyrotron theory,” Physics of Fluids, vol. 29, no. 2, pp. 561–567, 1986.CrossRefGoogle Scholar
  27. 27.
    Zhou J., Liu D., Liao C. and Li Z., “CHIPIC: an efficient code for electromagnetic PIC modeling and simulation,” IEEE Trans. Plasma Sci., vol. 37, no. 10, pp. 2002–2011, 2009.CrossRefGoogle Scholar
  28. 28.
    Qixiang Zhao, Sheng Yu, “The Nonlinear Designs and Experiments on a 0.42-THz Second Harmonic Gyrotron With Complex Cavity,” IEEE Tran. Electron Devices, vol. 64, no. 2, pp. 564–570, 2017.CrossRefGoogle Scholar
  29. 29.
    W. Fu, Y. Yan, X. Li, and S. Liu, “The Experiment of A 220 GHZ Gyrotron with a Pulse Magnet,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 31, pp. 404–410, 2010.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Terahertz Research Center, School of Physical ElectronicsUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations