Impact of the Metal Adhesion Layer on the Radiation Power of Plasmonic Photoconductive Terahertz Sources

  • Deniz Turan
  • Sofia Carolina Corzo-Garcia
  • Nezih Tolga Yardimci
  • Enrique Castro-Camus
  • Mona Jarrahi
Article

Abstract

The use of plasmonic contact electrodes in a photoconductive terahertz source offers high optical-to-terahertz conversion efficiencies. The high efficiency is because plasmonic contact electrodes concentrate a large portion of the incident optical pump beam in close proximity to the contact electrodes. By reducing the average transport path length of the photo-generated carriers from the contact electrodes, a larger number of the photocarriers drift to the terahertz radiating elements of the photoconductive source within a sub-picosecond time scale. Therefore, higher terahertz radiation power levels are achieved compared to a similar photoconductive source without plasmonic contact electrodes. Au is a preferred metal for plasmonic contact electrodes because of the strong plasmonic enhancement factors it offers at near-infrared optical wavelengths. However, it requires an adhesion layer to stick well to most III–V semiconductor substrates used in photoconductive terahertz sources. In this paper, we analyze the impact of the Au adhesion layer on the performance of plasmonic photoconductive sources fabricated on a GaAs substrate. Our analysis suggests that Cr is the most promising adhesion layer for plasmonic contact electrodes. We show that the use of a Cr adhesion layer instead of Ti, which is used in previously demonstrated plasmonic photoconductive sources, offers up to an 80% enhancement in the generated terahertz powers. We report record-high terahertz power emissions of up to 6.7 mW from plasmonic photoconductive sources with Cr/Au contacts.

Keywords

Photoconductors Terahertz source Plasmonics 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Department of Energy (grant no. DE-SC0016925) and Moore Inventor Fellowship.

References

  1. 1.
    M. Tonouchi, Nature Photonics, 1, 97–105, (2007).CrossRefGoogle Scholar
  2. 2.
    D. G. Rowe, Nature Photonics, 1, 75–77, (2007).CrossRefGoogle Scholar
  3. 3.
    D.M. Mittleman, R.H. Jacobsen, R. Neelamani, R.G. Baraniuk, M.C. Nuss, J. Appl. Phys. B, 67, 3, 379–390, (1998).CrossRefGoogle Scholar
  4. 4.
    K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Opt. Express, 11,20, 2549–2554, (2003).CrossRefGoogle Scholar
  5. 5.
    R.M. Woodward, V.P. Wallace, D.D. Arnone, E.H. Linfield, M. Pepper, J. Biol Phys, 29, 2, 257–261, (2003).CrossRefGoogle Scholar
  6. 6.
    D. D. Arnone, C. Ciesla, M. Pepper, Physics World, 13, 4 (2000).CrossRefGoogle Scholar
  7. 7.
    L. L. Van Zandt, V. K. Saxena, Phys. Rev. A, 39, 5, 2672–2674, (1989).CrossRefGoogle Scholar
  8. 8.
    J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Semicond. Sci. Technol, 20, 7, (2005).CrossRefGoogle Scholar
  9. 9.
    M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, W. R. Tribe, Proceedings of. SPIE, 5070, 44–52, (2003).CrossRefGoogle Scholar
  10. 10.
    M. Nagel, M. Forst, H. Kurz, J. Phys. Condensed Matter, 18, 18, (2006).CrossRefGoogle Scholar
  11. 11.
    D. Van der Weide, J. Murakowski, F. Keilmann, IEEE Trans. Microwave Theory and Techniques, 48, 4, (2000).Google Scholar
  12. 12.
    N. Nagai, T. Imai, R. Fukasawa, K. Kato, K. Yamauchi, Appl. Phys. Lett., 85, 18, 4010–4012, (2004).CrossRefGoogle Scholar
  13. 13.
    D. H. Auston, K. P. Cheung, P. R. Smith, Appl. Phys. Lett., 45, 3, 284–286, (1984).CrossRefGoogle Scholar
  14. 14.
    M. Jarrahi, T. H. Lee, In: IEEE Microwave Symposium Digest, (IEEE-2008), pp. 391–394.Google Scholar
  15. 15.
    H. Roehle, R. J. B. Dietz, H. J. Hensel, J. Böttcher, H. Künzel, D. Stanze, M. Schell, B. Sartorius, Opt. Express, 18, 3, 2296–2301, (2010).CrossRefGoogle Scholar
  16. 16.
    Z. D. Taylor, E. R. Brown, J. E. Bjarnason, Opt. Lett., 31, 11, 1729–1731, (2006).CrossRefGoogle Scholar
  17. 17.
    M. Jarrahi, Photon. Technol. Lett., 21, 11, 830–832, (2009).CrossRefGoogle Scholar
  18. 18.
    M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, T. Dekorsy, Opt. Express, 18, 9, 9251–9257, (2010).CrossRefGoogle Scholar
  19. 19.
    A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, Appl. Phys. Lett., 86, 121114, (2005).CrossRefGoogle Scholar
  20. 20.
    S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, A. C. Gossard, Appl. Phys. Lett., 101, 101105, (2012).CrossRefGoogle Scholar
  21. 21.
    S. Winnerl, J. Infrared. Millim.and Terahertz Waves, 33, 4, (2012).CrossRefGoogle Scholar
  22. 22.
    F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, M. Helm, Appl. Phys. Lett., 91, 081109, (2007).CrossRefGoogle Scholar
  23. 23.
    P. U. Jepsen, R. H. Jacobsen, and S. R. Keiding, J. Opt. Soc. Am. B, 13, 11, (1996).CrossRefGoogle Scholar
  24. 24.
    M. Jarrahi, IEEE Transactions on Terahertz Science and Technology, 5, 3, 391–397, (2015).CrossRefGoogle Scholar
  25. 25.
    C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi, Nature Communications, 4, 1622, (2013).CrossRefGoogle Scholar
  26. 26.
    C. W. Berry, M. Jarrahi, New J. of Phys. Focus Issue on Terahertz Plasmonics, 14, 105029, (2012).Google Scholar
  27. 27.
    C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, M. Jarrahi, Opt. Letters, 39, 15, 4522–4524, (2014).CrossRefGoogle Scholar
  28. 28.
    S.-H. Yang, M. R. Hashemi, C. W. Berry, M. Jarrahi, IEEE Trans. on Terahz Sci. and Technol, 4, 575–581, (2014).CrossRefGoogle Scholar
  29. 29.
    C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, M. Jarrahi, Appl. Phys. Lett., 105, 011121, (2014).CrossRefGoogle Scholar
  30. 30.
    C. W. Berry, M. R. Hashemi, M. Jarrahi, Appl. Phys. Lett., 104, 081122, (2014).CrossRefGoogle Scholar
  31. 31.
    S.-H. Yang, R. Watts, X. Li, N. Wang, V. Cojocaru, J. O'Gorman, L. P. Barry, M. Jarrahi, Opt. Express, 23, 24, 31206–31215, (2015).CrossRefGoogle Scholar
  32. 32.
    S.-H. Yang, M. Jarrahi, Appl. Phys. Lett., 107, 131111, (2015).CrossRefGoogle Scholar
  33. 33.
    N. T. Yardimci, S.-H. Yang, C. W. Berry, M. Jarrahi, IEEE Trans. on Terahertz Sci. and Technol., 5(2), 223–229, (2015).CrossRefGoogle Scholar
  34. 34.
    N. T. Yardimci, M. Jarrahi, Appl. Phys. Lett., 109, 191103, (2016).CrossRefGoogle Scholar
  35. 35.
    B-Y Hsieh, M. Jarrahi, J. of Appl. Phys., 109, 084326, (2011).CrossRefGoogle Scholar
  36. 36.
    S.-H. Yang, M. Jarrahi, Opt. Lett., 38, 18, 3677–3679, (2013).CrossRefGoogle Scholar
  37. 37.
    A.G. Baca, F. Ren, J. C. Zolper, R. D. Briggs, and S. J. Pearton, Thin Solid Films, 308-309, 599–606, (1997).CrossRefGoogle Scholar
  38. 38.
    T.C. Shen, G.B. Gao, H. Morkoc, J. Vac. Sci. Technol. B, 10, 5, 2113–2132, (1992).CrossRefGoogle Scholar
  39. 39.
    V.L. Rideout, Solid-State Electron., 18, 6, 541–550 (1975).CrossRefGoogle Scholar
  40. 40.
    A. Piotrowska, A. Guivarch, G. Pelaus, Solid-State Electron., 26, 3, 179–197 (1983).CrossRefGoogle Scholar
  41. 41.
    M. Murakami, Mater. Sci. Rep., 5, 273–317 (1990).CrossRefGoogle Scholar
  42. 42.
    G.Y. Robinson, in: C. Wilmsen (Ed.), Physics and Chemistry of III-V Compound Semiconductor Interface, (Springer, 1985)Google Scholar
  43. 43.
    E.H. Rhoderick, E.H. William, Metal-Semiconductor Contacts, (Oxford, 1988).Google Scholar
  44. 44.
    L.C. Wang, Mat. Res. Soc. Symp. Proc., 319, 93, (1993).CrossRefGoogle Scholar
  45. 45.
    N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Wilk, H-W Hübers, M. Koch, Opt. Express, 16, 24, 19695–19705, (2008).CrossRefGoogle Scholar
  46. 46.
    W. Shi, L. Hou, X. Wang, J. of Appl. Phys, 110, 023111, (2011).CrossRefGoogle Scholar
  47. 47.
    A. G. Baca, and C. I. H. Ashby, Fabrication of GaAs devices, (IET, United Kingdom 2005)CrossRefGoogle Scholar
  48. 48.
    J. R. Waldrop, J. Vac. Sci. Technol. B, 2,3, 445–448, (1984).CrossRefGoogle Scholar
  49. 49.
    N. Newman, Z. Liliental-Weber, E. R. Weber, J. Washburn, and W. E. Spicer, Appl. Phys. Lett. 145, 145–147, (1988).CrossRefGoogle Scholar
  50. 50.
    S.M.Sze and K. K. Ng, Physics of semiconductor devices. (John Wiley and Sons, Inc, Hoboken, 2006).CrossRefGoogle Scholar
  51. 51.
    Z. Liliental-Weber, N. Newman, J. Washburn, E. R. Weber, and W. E. Spicer, Appl. Phys. Lett., 54, 4, (1989).CrossRefGoogle Scholar
  52. 52.
    W. E. Spicer, N. Newman, C. J. Spindt, Z. Liliental-Weber, and E. R. Weber, J. Vac. Sci. Technol. A, 8, 2084–2089 (1990).Google Scholar
  53. 53.
    C. E. Mccants, T. Kendelewicz, P. H. Mahowald, K. A. Bertness, M. D. Williams, N. Newman, I. Lindau, and W. E. Spicer, J. Vac. Sci. Technol. A, 6, 3, 1466–1472, (1988).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Deniz Turan
    • 1
  • Sofia Carolina Corzo-Garcia
    • 2
  • Nezih Tolga Yardimci
    • 1
  • Enrique Castro-Camus
    • 2
  • Mona Jarrahi
    • 1
  1. 1.Electrical Engineering DepartmentUniversity of California Los AngelesLos AngelesUSA
  2. 2.Centro de Investigaciones en ÓpticaLeónMexico

Personalised recommendations