Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification

  • Y. Avetisyan
  • A. Makaryan
  • V. Tadevosyan
  • M. Tonouchi


A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed “beamlets,” which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask’s steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet’s spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.


Terahertz generation Optical rectification Tilted pulse-front pumping 



This work is partially supported by State Committee of Science of Armenia (15T-6B245). The help of Dr. H. Chosrowjan is acknowledged.


  1. 1.
    J. Hebling, K.-L. Yeh, M. C. Hoffmann, and K. A. Nelson, High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy, IEEE J. Sel. Top. Quantum Electron., vol. 14, pp. 345–353, 2008.CrossRefGoogle Scholar
  2. 2.
    M. C Hoffmann and J. A. Fülöp, Intense ultrashort terahertz pulses: generation and applications, J. Phys. D: Appl. Phys. vol. 44, p. 083001, 2011.CrossRefGoogle Scholar
  3. 3.
    T. Kampfrath, K. Tanaka, and K. A. Nelson, Resonant and nonresonant control over matter and light by intense terahertz transients, Nat. Photonics, vol. 7, pp. 680–690, 2013.Google Scholar
  4. 4.
    H. Hirori, M. Nagai, and K. Tanaka, Excitonic interactions with intense terahertz pulses in ZnSe/ZnMgSSe multiple quantum wells, Phys. Rev. B., vol. 81, p. 081305, 2010.CrossRefGoogle Scholar
  5. 5.
    L. Pálfalvi, J. A. Fülöp, Gy. Tóth, and J. Hebling, Evanescent-wave proton post accelerator driven by intense THz pulse, Phys. Rev. ST Accel. Beams., vol. 17, p. 031301, 2014.CrossRefGoogle Scholar
  6. 6.
    E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, Terahertz-driven linear electron acceleration, Nat. Commun., vol. 6, p. 8486, 2015.CrossRefGoogle Scholar
  7. 7.
    C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser, Opt. Lett. vol. 39, pp. 6632–6635, 2014.CrossRefGoogle Scholar
  8. 8.
    G. Polónyi, B. Monoszlai, G. Gäumann, G. Andriukaitis, T. Balciunas, A. Pugzlys, A. Baltuska, T. Feurer, J. Hebling, and J. A. Fülöp, High-energy terahertz pulses from semiconductors pumped beyond the three-photon absorption edge, Opt. Express, vol. 24, pp. 23872–23882, 2016.CrossRefGoogle Scholar
  9. 9.
    C. Zhang, Y. Avestisyan, G. Abgaryan, I. Kawayama, H. Murakami, and M. Tonouchi, Tunable narrowband terahertz generation in lithium niobate crystals using a binary phase mask, Opt. Lett., vol. 38, pp. 953–955, 2013.CrossRefGoogle Scholar
  10. 10.
    J. Hebling, G. Almási, I. Z. Kozma, and J. Kuhl, Velocity matching by pulse front tilting for large-area THz-pulse generation, Opt. Lett., vol. 10, pp. 1161–1166, 2002.Google Scholar
  11. 11.
    K-L Yeh, M C Hoffmann, J Hebling, K A Nelson, Generation of 10 μJ ultrashort THz pulses by optical rectification, Appl. Phys. Lett., vol. 90, 171121, 2007.CrossRefGoogle Scholar
  12. 12.
    H Hirori, A Doi, F Blanchard, K Tanaka. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3, Appl. Phys. Lett. vol. 98, 091106, 2011.CrossRefGoogle Scholar
  13. 13.
    M. Nagai, E. Matsubara, and M. Ashida, High-efficiency terahertz pulse generation via optical rectification by suppressing stimulated Raman scattering process, Opt. Express, vol. 20, pp. 6509–6514, 2012.CrossRefGoogle Scholar
  14. 14.
    X. Wu, A.-L. Calandron, K. Ravi, C. Zhou, M. Hemmer, F. Reichert, D. Zhang, H. Cancaya, L. Zapata, N. Matlis, and F. Kartner, Optical generation of single-cycle 10 MW peak power 100 GHz waves, Opt. Express, vol. 24, pp. 21059–21069, 2016.CrossRefGoogle Scholar
  15. 15.
    J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, Efficient generation of THz pulses with 0.4 mJ energy, Opt. Express, vol. 22, pp. 20155–20163, 2014.CrossRefGoogle Scholar
  16. 16.
    S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate, Opt. Lett., vol. 38, pp. 796–798, 2013.CrossRefGoogle Scholar
  17. 17.
    K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. X. Kärtner, Limitations to THz generation by optical rectification using tilted pulse fronts, Opt. Express, vol. 22, pp. 20239–20251, 2014.CrossRefGoogle Scholar
  18. 18.
    F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilli Joule pump energies, Opt. Lett., vol. 39, pp. 4333–4336, 2014.CrossRefGoogle Scholar
  19. 19.
    B. Ofori-Okai, P. Sivarajah, W. Huang, and K. Nelson, THz generation using a reflective stair-step echelon, Opt. Express, vol. 24, pp. 5057–5068, 2016.CrossRefGoogle Scholar
  20. 20.
    S. Zhong, Ju. Li, Z. Zhai, L. Zhu, Ji. Li, P. Zhou, J. Zhao, and Ze. Li, Generation of 0.19-mJ THz pulses in LiNbO3 driven by 800-nm femtosecond laser, Opt. Express, vol. 24, pp. 14828–14835, 2016.CrossRefGoogle Scholar
  21. 21.
    L. Palfalvi, J. A. Fülöp, G. Almasi, and J. Hebling, Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification, Appl. Phys. Lett., vol. 92, p. 171107, 2008.CrossRefGoogle Scholar
  22. 22.
    F. Yoshida, K. Nagashima, M. Tsubouchi, M. Maruyama, and Y. Ochi, THz pulse generation using a contact grating device composed of TiO2/SiO2 thin films on LiNbO3 crystal, J. Appl. Phys., vol. 120, p. 183103, 2016.CrossRefGoogle Scholar
  23. 23.
    J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, Highly efficient scalable monolithic semiconductor terahertz pulse source, Optica, vol. 3, pp. 1075–1078, 2016.CrossRefGoogle Scholar
  24. 24.
    G. Abgaryan, A. Makaryan, V. Tadevosyan, and Y. Avetisyan, Broadband THz generation in lithium niobate crystal by step-wise phase mask, in Proceedings of Microwave and THz Technique and Applications (“Gitutiun” Publishing House of the NAS RA Yerevan 2015), pp. 13–16.
  25. 25.
    Y. Avetisyan, M. Tonouchi, Terahertz generation in QPM structure formed by a phase mask, Opt. Lett., vol. 37, pp. 4155–4157, 2012.CrossRefGoogle Scholar
  26. 26.
    J. L’huillier, G. Torosyan, M. Theuer, Y. Avetisyan, and R. Beigang, Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate—Part 1: Theory, Appl. Phys. B., vol. 86, pp. 185–196, 2007.CrossRefGoogle Scholar
  27. 27.
    K. L. Vodopyanov, Optical THz-wave generation with periodically-inverted GaAs, Laser & Photon. Rev., vol. 2, pp. 11–25, 2008.CrossRefGoogle Scholar
  28. 28.
    M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, Quasi-phase-matched second harmonic generation: tuning and tolerances, IEEE J. Quantum Electron., vol. 28, pp. 2631–2654, 1992.CrossRefGoogle Scholar
  29. 29.
    Y. Avestisyan, C. Zhang, I. Kawayama, H. Murakami, T. Somekawa, H. Chosrowjan, M. Fujita, and M. Tonouchi, Terahertz generation by optical rectification in lithium niobate crystal using a shadow mask, Opt. Express, vol. 20, pp. 25752–25757, 2012.CrossRefGoogle Scholar
  30. 30.
    Y. Jiang, D. Li, Y. J. Ding, and I. B. Zotova, Terahertz generation based on parametric conversion: from saturation of conversion efficiency to back conversion, Opt. Lett., vol. 36, pp. 1608–1610, 2011.CrossRefGoogle Scholar
  31. 31.
    D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, R. L. Byer, and K. L. Vodopyanov, 16-μm infrared generation by difference frequency mixing in diffusion-bonded-stacked GaAs, Opt. Lett., vol. 23, pp. 1010–1012, 1998.CrossRefGoogle Scholar
  32. 32.
    T. Kubota, H. Atarashi, and I. Shoji, Fabrication of quasi-phase-matching stack of GaAs plates using a new technique: room-temperature bonding, in Advanced Solid-State Lasers, OSA Technical Digest Series (online) (Optical Society of America, 2016), paper ATu5A.6.
  33. 33.
    O. Gayer, Z. Sacks, E. Galun, and A. Arie, Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3, Appl. Phys. B., vol. 91, pp. 343–348, 2008.CrossRefGoogle Scholar
  34. 34.
    L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichiometric LiNbO3 in the THz range, J. Appl. Phys., vol. 97, p. 123505, 2005.CrossRefGoogle Scholar
  35. 35.
    D. T. F. Marple, Refractive index of ZnSe, ZnTe, and CdTe, J. Appl. Phys., vol. 35, pp. 539–541, 1964.CrossRefGoogle Scholar
  36. 36.
    S. R. Tripathi, M. Aoki, M. Takeda, T. Asahi, I. Hosako and N. Hiromot, Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy, Jap. J. Appl. Phys., vol. 52, p. 042401, 2013.CrossRefGoogle Scholar
  37. 37.
    J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, Design of high-energy terahertz sources based on optical rectification, Opt. Express, vol. 18, pp. 12311–12327, 2010.CrossRefGoogle Scholar
  38. 38.
    M. C. Hoffmann, K.-L. Yeh, J. Hebling, and K. A. Nelson, Efficient terahertz generation by optical rectification at 1035 nm, Opt. Express, vol. 15, pp. 11706–11713, 2007.CrossRefGoogle Scholar
  39. 39.
    Y. Avetisyan, C. Zhang, and M. Tonouchi, Analysis of linewidth tunable terahertz wave generation in periodically poled lithium niobate, J. Infrared Milli. Terahz Waves, vol. 33, pp. 989–998, 2012.CrossRefGoogle Scholar
  40. 40.
    M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling & L. Pálfalvi, Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range, J. Infrared Milli Terahz Waves, vol. 36, pp. 1203–1209, 2015.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Microwave Engineering DepartmentYerevan State UniversityYerevanArmenia
  2. 2.Institute of Laser EngineeringOsaka UniversityOsakaJapan

Personalised recommendations