An Optically Pumped Far-Infrared Folded Mirror-Less Cavity



A compact and efficient mirror-less cavity is presented for an optically pumped 192-μm far-infrared laser. With a gold-coated mirror and 30°-inclined anti-reflection coated Ge plate serving as highly reflective mirrors, a folded mirror-less CH3F cavity is achieved. Maximum energy of 0.72 mJ is obtained with the pump energy of 600 mJ, which gives an energy increment of 75% in comparison with the previous 1.85-m mirror-less system. The beam divergence angle of the FIR radiation from this folded mirror-less cavity is measured to be 14.2 mrad.


Far-infrared gas laser Mirror-less cavity Double-pass amplification 



This work is supported by the Science and Technology Project of Jilin Province (No. 20150623024TC-07), the Foundation for Young Scientists of Jilin Province (No. 20170520161JH), and the Foundation of Jilin Educational Committee (No. 2015-77).


  1. 1.
    E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounaix, Broadband terahertz imaging of documents written with lead pencils, Optics Communications, 282, 3104–3107 (2009).CrossRefGoogle Scholar
  2. 2.
    K. Xue, Q. Li, Y. D. Li, and Q. Wang, Continuous-wave terahertz in-line digital holography, Optics Letters, 37, 3228–3230 (2012).CrossRefGoogle Scholar
  3. 3.
    J. S. Melinger, Y. Yang, M. Mandehgar, and D. Grischkowsky, THz detection of small molecule vapors in the atmospheric transmission windows, Optics Express, 20, 6788–6807 (2012).CrossRefGoogle Scholar
  4. 4.
    T. K. Plant, L. A. Newman, E. J. Danielewicz, T. A. DeTemple, and P. D. Coleman, High power optically pumped far infrared lasers, IEEE Transactions on Microwave Theory & Techniques, 22, 988–990 (1974).CrossRefGoogle Scholar
  5. 5.
    C. T. Gross, J. Kiess, A. Mayer, and F. Keilmann, Pulsed high-power far-infrared gas laser: performance and spectral survey, IEEE Journal of Quantum Electronics, QE-23, 377–384 (1987).CrossRefGoogle Scholar
  6. 6.
    L. Geng, Y. Qu, W. Zhao, and J. Du, High efficient, intense and compact pulsed D2O terahertz laser pumped with a TEA CO2 laser, Journal of Infrared, Millimeter, and Terahertz Waves, 34, 780–786 (2013).CrossRefGoogle Scholar
  7. 7.
    A. T. Rosenberger, and T. A. DeTemple, Far-infrared superradiance in methyl fluoride, Physical Review A, 24, 868–883 (1981).CrossRefGoogle Scholar
  8. 8.
    C. Liu, Y. C. Qu, W. J. Zhao, and R. L. Zhang, Intense mirror-less pulsed far-infrared CH3F emission pumped with a TEA CO2 Laser, Journal of Infrared, Millimeter, and Terahertz Waves, 36, 513–519 (2015).CrossRefGoogle Scholar
  9. 9.
    L. Miao, D. L. Zuo, Z. X. Jiu, and Z. H. Cheng, An efficient cavity for optically pumped terahertz lasers, Optics Communications, 283, 3171–3175 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, Journal of the Optical Society of America B, 7, 2006–2015 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.National & Local Joint Engineering Research Center of Space Optoelectronics TechnologyChangchun University of Science & TechnologyChangchunChina
  2. 2.National Key Laboratory of Tunable Laser TechnologyHarbin Institute of TechnologyHarbinChina

Personalised recommendations