Advertisement

Terahertz Luminescence and Electrical Characteristics of SiC Structures with Natural Superlattice in Strong Electric Fields

  • V. I. Sankin
  • A. V. Andrianov
  • A. G. Petrov
  • A. O. Zakhar’in
  • S. S. Nagalyuk
  • P. P. Shkrebiy
Article

Abstract

Recently, the intense terahertz electroluminescence from monopolar n++–n–n+ structures of 8H-SiC natural superlattice at helium temperatures due to Bloch oscillations was found out. In the present work, we compare the THz emission and electrical characteristics of monopolar n++–n–n+ and bipolar n++π–n+ 8H-SiC structures at 7 K. The bipolar n++π–n+ 8H-SiC structures were analogous to those on which the negative differential conductivity effect was observed earlier for three polytypes (4H, 6H, and 8H) at T = 300 K. The obtained results allow one to draw a conclusion about common nature of the negative differential conductivity and THz emission effects in the natural superlattice of SiC caused by Bloch oscillations. These results give the proof of fundamental importance supporting the objectivity of postulates of the F. Bloch – C. Zener – G. N. Wannier theory

Keywords

Bloch oscillations Natural superlattice Polytype Terahertz Miniband 

Notes

Acknowledgements

The work has been partially supported by the special programs of the RAS presidium. The authors are thankful to Prof. R.A. Suris and Dr. A.M. Monakhov for the fruitful discussion.

References

  1. 1.
    F. Bloch, Z. Phys 52, 555 (1928).Google Scholar
  2. 2.
    C. Zener, Proceedings of the Royal Society of London. Series A 145(855), 523 (1934).Google Scholar
  3. 3.
    G. H. Wannier, Phys. Rev. 117(2), 432 (1960).Google Scholar
  4. 4.
    A. Shik, Soviet Phys. Semicond. 8(9), 1195 (1974).Google Scholar
  5. 5.
    K. Leo, Semiconductor Science and Technology 13(3), 249 (1998).Google Scholar
  6. 6.
    J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, S. Schmitt-Rink, Phys. Rev. B 46, 7252 (1992).Google Scholar
  7. 7.
    K. Leo, P.H. Bolivar, F. Brüggemann, R. Schwedler, K. Köhler, Solid State Communications 84(10), 943 (1992).Google Scholar
  8. 8.
    C. Waschke, H.G. Roskos, R. Schwedler, K. Leo, H. Kurz, K. Köhler, Phys. Rev. Lett. 70, 3319 (1993).Google Scholar
  9. 9.
    Y. Shimada, K. Hirakawa, M. Odnoblioudov, K.A. Chao, Phys. Rev. Lett. 90, 046806 (2003).Google Scholar
  10. 10.
    R. Martini, G. Klose, H.G. Roskos, H. Kurz, H.T. Grahn, R. Hey, Phys. Rev. B 54, R14325 (1996).Google Scholar
  11. 11.
    P. Voisin, Ann. Phys. Fr. 22(6), 681 (1997).Google Scholar
  12. 12.
    V.I. Sankin, A.V. Andrianov, A.O. Zakhar’in, A.G. Petrov, JETP Lett 94(5), 362 (2011).Google Scholar
  13. 13.
    V.I. Sankin, A.V. Andrianov, A.O. Zakhar’in, A.G. Petrov, Applied Physics Letters 100(11), 111109 (2012).Google Scholar
  14. 14.
    V. Sankin, A. Andrianov, A. Petrov, A. Zakhar’in, A. Lepneva, P. Shkrebiy, Nanoscale Research Letters 7(1), 560 (2012).Google Scholar
  15. 15.
    V. Sankin, Semiconductors 36, 717 (2002).Google Scholar
  16. 16.
    V. Sankin, A.V. Naumov, Tech. Phys. Lett. 16, 281 (1990).Google Scholar
  17. 17.
    V. Sankin, A. Naumov, Superlattices and Microstructures 10(3), 353 (1991).Google Scholar
  18. 18.
    V. I. Sankin, A.V. Andrianov, A.G. Petrov, A.O. Zakhar’in, Applied Physics Letters 108(21), 211108 (2016).Google Scholar
  19. 19.
    A.R. Verma, P. Krishna, Polymorphism and polytypism in crystals (J. Weley&Sons Inc. New York. London. Sydney, 1966).Google Scholar
  20. 20.
    L.S. Ramsdell, American Mineralogist 32(1-2), 64 (1947).Google Scholar
  21. 21.
    W.J. Choyke, L. Patrick, Phys. Rev. 127(6), 1868 (1962).Google Scholar
  22. 22.
    L. Esaki, R. Tsu, IBM Journal of Research and Development 14(1), 61 (1970).Google Scholar
  23. 23.
    A. Laref, S. Laref, physica status solidi (b) 245(1), 89 (2008).Google Scholar
  24. 24.
    P.J. Colwell, M.V. Klein, Phys. Rev. B 6, 498 (1972).Google Scholar
  25. 25.
    V.I. Sankin, Sov. Phys. Solid State 6(3), 671 (1973).Google Scholar
  26. 26.
    H.E. Nilsson, M. Hjelm, C. Fröjdh, C. Persson, U. Sannemo, C.S. Petersson, Journal of Applied Physics 86(2), 965 (1999).Google Scholar
  27. 27.
    H. Jones, The theory of Brillouin Zones and Electronic States in Crystals (North-Holland Publishing Company, Amsterdam, 1960).Google Scholar
  28. 28.
    A. Maksimov, A. Mal’tsev, N. Yushin, I. Nikitina, Technical Physics Letters 21, 301 (1995).Google Scholar
  29. 29.
    V. Sankin, P. Shkrebii, N. Savkina, N. Kuznetsov, JETP Letters 77, 34 (2003).Google Scholar
  30. 30.
    N.N. Zinov’ev, A.V. Andrianov, V.Y. Nekrasov, L.V. Belyakov, O.M. Sreseli, G. Hill, J.M. Chamberlain, Semiconductors 36(2), 226 (2002).Google Scholar
  31. 31.
    A. Sibille, J. Palmier, H. Wang, J. Esnault, F. Mollot, Solid-state electronics 32(12), 1461 (1989).Google Scholar
  32. 32.
    F. Beltram, F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, A.Y. Cho, Phys. Rev. Lett. 64, 3167 (1990).Google Scholar
  33. 33.
    E. Schomburg, T. Blomeier, K. Hofbeck, J. Grenzer, S. Brandl, I. Lingott, A.A. Ignatov, K.F. Renk, D.G. Pavel’ev, Y. Koschurinov, B.Y. Melzer, V.M. Ustinov, S.V. Ivanov, A. Zhukov, P.S. Kop’ev, Phys. Rev. B 58(7), 4035 (1998).Google Scholar
  34. 34.
    V. Sankin, Superlattices and microstructures 18(4), 309 (1995).Google Scholar
  35. 35.
    S. Sze, K. Ng, Physics of Semiconductor Devices (Wiley, 2006).Google Scholar
  36. 36.
    V. Sankin, A. Andrianov, A. Zakhar’in, A. Petrov, Semiconductors 49(2), 242 (2015).Google Scholar
  37. 37.
    M. Wojdyr, Journal of Applied Crystallography 43(5 Part 1), 1126 (2010).Google Scholar
  38. 38.
    R. Verenchikova, Y. Vodakov, D. Litvin, E. Mokhov, M. Ramm, V. Sankin, A. Ostroumov, V. Sokolov, Sov. Phys. Semicond. 16, 2029 (1982).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Ioffe InstituteSaint PetersburgRussia

Personalised recommendations