Development of Measurement and Extraction Technique of Complex Permittivity Using Transmission Parameter S 21 for Millimeter Wave Frequencies

Article
  • 242 Downloads

Abstract

This study provides an overview of measured S-parameters and its processing to extract the dielectric properties of materials such as Teflon, PMMA, and PVC which are preferred for materials characterization process. In addition, a correction model is presented for transmission parameter (S 21) to obtain the dielectric constant with high accuracy. A non-destructive and non-contact free space measurement method has been used to measure S-parameters of thin samples in the low THz frequency range. S-parameters are measured in free space by vector network analyzer supported with two frequency extenders. Additionally, the parabolic mirrors are used to collimate the generated beam in wide frequency range. Furthermore, a standard filter process is performed to remove the undesired ripples in signal using singular spectrum analyzer before the implementation of extraction process. Newton-Raphson extraction technique is used to extract the material complex permittivity as a function of the frequency in Y-band (325–500 GHz).

Keywords

Complex permittivity Material characterization Newton-Raphson technique Quasi-optical free space measurement 

Notes

Acknowledgements

Part of the work has been supported by the EMRP joint research project “NEW07 Microwave and terahertz metrology for homeland security.” The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

References

  1. 1.
    S. O. Nelson, J. Food Eng. 21, 365 (1994).CrossRefGoogle Scholar
  2. 2.
    A. Kazemipour, M. Hudlicka, See-Khee Yee, M. A. Salhi, D. Allal, T. Kleine-Ostmann, and T. Schrader, IEEE Trans. Instrum. Meas. 64, 1438 (2015).CrossRefGoogle Scholar
  3. 3.
    M. T. Jilani, M. Zaka, A. M. Khan, M. T. Khan, and S. M. Ali, Int. J. Inf. Technol. Electr. Eng. 1, 1 (2012).Google Scholar
  4. 4.
    D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, IEEE Trans. Instrum. Meas. 39, 387 (1990).CrossRefGoogle Scholar
  5. 5.
    X. Zhang, T. Chang, H.-L. Cui, Z. Sun, C. Yang, X. Yang, L. Liu, and W. Fan, J. Infrared, Millimeter, Terahertz Waves 38, 356 (2017).CrossRefGoogle Scholar
  6. 6.
    S. Trabelsi and S. O. Nelson, Meas. Sci. Technol. 17, 2289 (2006).CrossRefGoogle Scholar
  7. 7.
    J. Zhang, M. Nakhkash, and Y. Huang, Meas. Sci. Technol. 12, 1147 (2001).CrossRefGoogle Scholar
  8. 8.
    I. Zivkovic and A. Murk, in Microw. Mater. Charact. (InTech, 2012), pp. 73–90.Google Scholar
  9. 9.
    T. Ozturk, A. Elhawil, M. Düğenci, İ. Ünal, and İ. Uluer, J. Electromagn. Waves Appl. 30, 1785 (2016).CrossRefGoogle Scholar
  10. 10.
    B.-K. Chung, Prog. Electromagn. Res. 75, 239 (2007).CrossRefGoogle Scholar
  11. 11.
    T. Ozturk, İ. Uluer, and İ. Ünal, J. Mater. Sci. Mater. Electron. 27, 1 (2016).CrossRefGoogle Scholar
  12. 12.
    Z. Awang, F. A. M. Zaki, N. H. Baba, A. S. Zoolfakar, and R. A. Bakar, Prog. Electromagn. Res. B 51, 307 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Elhawil, G. Koers, L. Zhang, J. Stiens, and R. Vounckx, IET Sci. Meas. Technol. 3, 39 (2009).CrossRefGoogle Scholar
  14. 14.
    S. Puthukodan, E. Dadrasnia, V. V. K. Thalakkatukalathil, H. L. Rivera, G. Ducournau, and J.-F. Lampin, J. Electromagn. Waves Appl. 5071, 1 (2016).Google Scholar
  15. 15.
    S. N. Jha, K. Narsaiah, and A. L. Basediya, J. Food Sci. Technol. 48, 387 (2011).CrossRefGoogle Scholar
  16. 16.
    S. Puthukodan, E. Dadrasnia, V. K. T. Vinod, H. Lamela Rivera, G. Ducournau, and J.-F. Lampin, Microw. Opt. Technol. Lett. 56, 1895 (2014).CrossRefGoogle Scholar
  17. 17.
    E. Dadrasnia, S. Puthukodan, V. V. K. Thalakkatukalathil, H. Lamela, G. Ducournau, J.-F. Lampin, F. Garet, and J.-L. Coutaz, J. Spectrosc. 2014, 1 (2014).CrossRefGoogle Scholar
  18. 18.
    A. Elhawil, R. Vounckx, L. Zhang, G. Koers, and J. Stiens, IET Sci. Meas. Technol. 3, 13 (2009).CrossRefGoogle Scholar
  19. 19.
    A. N. Vicente, G. M. Dip, and C. Junqueira, SBMO/IEEE MTT-S Int. Microw. Optoelectron. Conf. Proc. 738 (2011).Google Scholar
  20. 20.
    P. G. Bartley and S. B. Begley, Instrum. Meas. Technol. Conf. (I2MTC), 2010 I.E. 4 (2010).Google Scholar
  21. 21.
    A. M. Nicolson and G. F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970).CrossRefGoogle Scholar
  22. 22.
    W. B. Weir, Proc. IEEE 62, 33 (1974).CrossRefGoogle Scholar
  23. 23.
    T. Ozturk, İ. Uluer, and İ. Ünal, Rev. Sci. Instrum. 87, 74705 (2016).CrossRefGoogle Scholar
  24. 24.
    X. Wang, W. Yu, X. Qi, and Y. Liu, EURASIP J. Adv. Signal Process. 2012, 103 (2012).CrossRefGoogle Scholar
  25. 25.
    F. J. Alonso, J. M. D. Castillo, and P. Pintado, J. Biomech. 38, 1085 (2005).CrossRefGoogle Scholar
  26. 26.
    T. Ozturk, A. Elhawil, İ. Uluer, and M. Tahir, J. Mater. Sci. Mater. Electron. April, 1 (2017).Google Scholar
  27. 27.
    T. Chang, X. Zhang, X. Zhang, and H.-L. Cui, Appl. Opt. 56, 3287 (2017).CrossRefGoogle Scholar
  28. 28.
    J. W. Lamb, Int. J. Infrared Millimeter Waves 17, 1997 (1996).CrossRefGoogle Scholar
  29. 29.
    D. Bourreau, A. Peden, and S. Le Maguer, IEEE Trans. Instrum. Meas. 55, 2022 (2006).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical-Electronics EngineeringKarabuk UniversityKarabukTurkey
  2. 2.Czech Metrology InstituteBrnoCzech Republic

Personalised recommendations