Experimental and Theoretical Study of Strong Low-Terahertz Absorption of Thymine

  • W.-D. Zhang
  • A. Bykhovski
  • J. A. Deibel
  • E. R. Brown
Article

Abstract

The absorption coefficient of a nucleobase-thymine-in powder form was measured with terahertz spectroscopy in both frequency- and time-domain experiments. For frequencies below 3 THz, a strong signature was observed at 1.27 THz. Furthermore, molecular-dynamic simulations were conducted to reveal that the 1.27 THz absorption signature is related to a transverse optical phonon mode. The simulations also indicated that bound water molecules are vital to the vibrational mode.

Keywords

Nucleobases Spectroscopy Optical phonon Molecular simulation Bound water molecules 

References

  1. 1.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices. Oxford University Press, 1998.Google Scholar
  2. 2.
    E. R. Brown, J. E. Bjarnason, A. M. Fedor, and T. M. Korter, On the strong and narrow absorption signature in lactose at 0.53 THz, Applied Physics Letters 90 (2007), 061908.Google Scholar
  3. 3.
    M. Van Exter, Ch. Fattingger, and D. Grischkowsky, Terahertz time-domain spectroscopy of water vapor, Optics Letters 14 (1989), 1128–1130.Google Scholar
  4. 4.
    B. M. Fisher, M. Walther, and P. U. Jepsen, Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy, Phys. Med. Biol. 47 (2002), 3807–3814.Google Scholar
  5. 5.
    M. Hangyo, T. Nagashima, and S. Nashima, Spectroscopy by pulsed terahertz radiation, Measurement Science and Technology 13 (2002), 1227–1738.Google Scholar
  6. 6.
    T. R. Globus, D. L. Woolard, T. Khromova, T. W. Crowe, M. Bykhovskaia, B. L. Gelmont, J. Hesler, and A. C. Samuels, THz-spectroscopy of biological molecules, Journal of Biological Physics 29 (2003), 89–100.Google Scholar
  7. 7.
    M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, Security applications of terahertz technology, Proceedings of SPIE 5070 (2003), 44–52.Google Scholar
  8. 8.
    J. Nishizawa, T. Sasaki, K. Suto, T. Tanabe, K. Saito, T. Yamada, and T. Kimura, THz transmittance measurements of nucleobases and related molecules in the 0.4- to 5.8-THz region using a GaP THz wave generator, Optics Communications 246 (2005), 229–239.Google Scholar
  9. 9.
    L. Laman, S. S. Harsha, D. Grischkowsky, and J. S. Melinger, High-resolution waveguide THz spectroscopy of biological molecules, Biophysical Journal 94 (2008), 1010–1020.Google Scholar
  10. 10.
    A. G. Davies, A. D. Burnett, W. -H. Fan, E. H. Linfield, and J. E. Cunningham, Terahertz spectroscopy of explosives and drugs, Materials Today 11 (2008), 18–26.Google Scholar
  11. 11.
    Y. -C. Shen, Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review, International Journal of Pharmaceutics 417 (2011), 48–60.Google Scholar
  12. 12.
    E. R. Brown, E. A. Mendoza, Y. Kuznetsova, A. Neumann, and S.R.J. Brueck, Terahertz and Mid Infrared Radiation: Generation, Detection and Applications, (NATO Science for Peace and Security Series B: Physics and Biophysics (M.F. Pereira and O. Shulika, eds.), Springer, New York, 2011. Chap. 3, pp. 15–22.Google Scholar
  13. 13.
    T. L. J. Chan, J. E. Jarnason, A. W. M. Lee, M. A. Celis, and E. R. Brown, Attenuation contrast between biomolecular and inorganic materials at terahertz frequencies, Applied Physics Letters 85 (2004), 2523–2525.Google Scholar
  14. 14.
    M. Kaushik, B. W. Ng, B. M. Fisher, and D. Abbott, Reduction of scattering effects in THz-TDS signals, IEEE Photonics Technology Letters 24 (2012), 155–156.Google Scholar
  15. 15.
    J. C. Beetz and G. Ascarelli, The low frequency vibrations of pyrimidine and purine bases, Spectrochimica Acta A. 36 (1980), 299–313.Google Scholar
  16. 16.
    D. A. Case, T. A. Darden, T. E. III Cheatham, C. L. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, S. Hayik, A. Roitberg, G. Seabra, J. Swails, A. W. Götz, I. Kolossváry, K. F. Wong, F. Paesani, J. Vanicek, R. M. Wolf, J. Liu, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q. Cai, X. Ye, J. Wang, M. -J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, R. Salomon-Ferrer, C. Sagui, V. Babin, T. Luchko, S. Gusarov, A. Kovalenko, and P. A. Kollman, AMBER 12, University of California, San Francisco, 2012.Google Scholar
  17. 17.
    NAMD was developed by the Theoretical and Computational Biophysics Group in the Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-Champaign.Google Scholar
  18. 18.
    J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, Scalable molecular dynamics with NAMD, Journal of Computational Chemistry 26 (2005), 1781–1802.Google Scholar
  19. 19.
    R. Gerdil, The Crystal Structure of Thymine Monohydrate, Acta Crystal 14 (1961), 333–344.Google Scholar
  20. 20.
    Correlation and Fluctuation Facility in AmberTools Users’ Manual, on the Web at http://ambermd.org/doc11/AmberTools.pdf, 2011.
  21. 21.
    F. Ladouceurt, A. Selmanit, C. Tannous, and G. Spronkene, Molecular dynamics calculations of infrared absorption spectra in the canonical ensemble: H on Si(100), Journal of Physics: Condensed Matter 1 (1989), 4129–4140.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Terahertz Sensors Laboratory, Department of Physics and Electrical EngineeringWright State UniversityDaytonUSA
  2. 2.Department of Electrical and Computer EngineeringNorth Carolina State UniversityRaleighUSA
  3. 3.Department of PhysicsWright State UniversityDaytonUSA

Personalised recommendations