Engineering the Losses and Beam Divergence in Arrays of Patch Antenna Microcavities for Terahertz Sources

  • Julien MadéoEmail author
  • Joel Pérez-Urquizo
  • Yanko Todorov
  • Carlo Sirtori
  • Keshav M. Dani


We perform a comprehensive study on the emission from finite arrays of patch antenna microcavities designed for the terahertz range by using a finite element method. The emission properties including quality factors, far-field pattern, and photon extraction efficiency are investigated for etched and non-etched structures as a function of the number of resonators, the dielectric layer thickness, and period of the array. In addition, the simulations are achieved for lossy and perfect metals and dielectric layers, allowing to extract the radiative and non-radiative contributions to the total quality factors of the arrays. Our study shows that this structure can be optimized to obtain low beam divergence (FWHM <10°) and photon extraction efficiencies >50% while keeping a strongly localized mode. These results show that the use of these microcavities would lead to efficient terahertz emitters with a low divergence vertical emission and engineered losses.


Terahertz sources Patch antenna Microcavity Arrays Finite element method 



This work was supported by JSPS Kakenhi grant number JP17K14126.


  1. 1.
    B. S. Williams, S. Kumar, H. Callebaut, J. L. Reno, Q. Hu, Terahertz quantum-cascade laser at l = 100 μm using metal waveguide for mode confinement, Applied Physics Letters 83, 2124 (2003).CrossRefGoogle Scholar
  2. 2.
    B. S. Williams, Terahertz quantum-cascade lasers, Nature Photonics 1, 517–525 (2007).CrossRefGoogle Scholar
  3. 3.
    J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno and J. R. Gao, Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions, Applied Physics Letters 88, 151105 (2006)CrossRefGoogle Scholar
  4. 4.
    M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, Low-divergence single mode terahertz quantum cascade laser, Nature Photonics 3, 586–590 (2009).CrossRefGoogle Scholar
  5. 5.
    F. Wang, I. Kundu, L. Chen, L. Li, E. H. Linfield, A. G. Davies, S. Moumdji, R. Collombelli, J. Mangeney, J. Tignon and S.S. Dhillon, Engineered far-fields of metal-metal terahertz quantum cascade lasers with integrated planar horn structures, Optics Express 24, 2174–2182 (2016)CrossRefGoogle Scholar
  6. 6.
    T.-Y. Kao, X. Cai, A. W. M. Lee, J. L. Reno, Q. Hu, Antenna coupled photonic wire lasers, Optics Express 23, 17091 (2015)CrossRefGoogle Scholar
  7. 7.
    T.-Y. Kao, J. L. Reno and Q. Hu, Phase-locked laser arrays through global antenna mutual coupling, Nature Photonics 10, 541–546 (2016).CrossRefGoogle Scholar
  8. 8.
    Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser and C. Sirtori, Optical properties of metal-dielectric-metal microcavities in the THz frequency range, Optics Express 18, 13886–13907 (2010).CrossRefGoogle Scholar
  9. 9.
    Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser and C. Sirtori, Ultrastrong light-matter coupling regime with polariton dots, Physical Review Letters 105, 196402 (2010).CrossRefGoogle Scholar
  10. 10.
    J. Madéo, Y. Todorov, A. Gilman, G. Frucci, L. H. Li, A. G. Davies, E. H. Linfield, C. Sirtori and K. M. Dani, Patch antenna microcavity terahertz sources with enhanced emission, Applied Physics Letters 109, 141103 (2016).CrossRefGoogle Scholar
  11. 11.
    M. Justen, C. Bonzon, K. Ohtani, M. Beck, U. Graf and J. Faist, 2D patch antenna array on a double metal quantum cascade laser with >90% coupling to a Gaussian beam and selectable facet transparency at 1.9 THz, Optics Letters 41, 4590–4592 (2016)CrossRefGoogle Scholar
  12. 12.
    L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh and B. S. Williams, Metasurface external cavity laser, Applied Physics Letters 107, 221105 (2015)CrossRefGoogle Scholar
  13. 13.
    C. Feuillet-Palma, Y. Todorov, A. Vasanelli and C. Sirtori, Strong near field enhancement in THz nano-antenna arrays, Scientific Reports 3, 1361 (2013)CrossRefGoogle Scholar
  14. 14.
    J. Madéo, Y. Todorov and C. Sirtori, Antenna-coupled microcavities for terahertz emission, Applied Physics Letters 104, 031108 (2014)CrossRefGoogle Scholar
  15. 15.
    E. D. Palik, Handbook of Optical Constants of Solids, Elsevier (1997)Google Scholar
  16. 16.
    S. Kohen, B. S. Williams and Q. Hu, Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators, Journal of Applied Physics 97, 053106 (2005)CrossRefGoogle Scholar
  17. 17.
    L. Malher, A. Tredicucci, F. Beltram, C. Walther, J. Faist and H. E. Beere, High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell, Applied Physics Letters 96, 191109 (2010)CrossRefGoogle Scholar
  18. 18.
    R. Mailloux, Phased Array Antenna Handbook, Norwood: Artech House (2005)Google Scholar
  19. 19.
    D. Palaferri, Y. Todorov, A. Mottaghizadeh, G. Frucci, G. Biasiol and C. Sirtori, Ultra-subwavelength resonators for high temperature high performance quantum detectors, New Journal of Physics 18, 113016 (2016)CrossRefGoogle Scholar
  20. 20.
    Y. Xie, Y. Li, J. Wang, N. Yang, W. Chu, S. Duan, Power amplification and coherent combination techniques for terahertz quantum cascade lasers, Quantum cascade lasers, Chap.5, Intech (2017)Google Scholar
  21. 21.
    M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation, Nature Photonics 1, 288–292 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Julien Madéo
    • 1
    Email author
  • Joel Pérez-Urquizo
    • 1
  • Yanko Todorov
    • 2
  • Carlo Sirtori
    • 2
  • Keshav M. Dani
    • 1
  1. 1.Femtosecond Spectroscopy UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan
  2. 2.Laboratoire Matériaux et Phénomènes QuantiquesUniversité Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7162ParisFrance

Personalised recommendations