Skip to main content
Log in

Engineering the Losses and Beam Divergence in Arrays of Patch Antenna Microcavities for Terahertz Sources

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We perform a comprehensive study on the emission from finite arrays of patch antenna microcavities designed for the terahertz range by using a finite element method. The emission properties including quality factors, far-field pattern, and photon extraction efficiency are investigated for etched and non-etched structures as a function of the number of resonators, the dielectric layer thickness, and period of the array. In addition, the simulations are achieved for lossy and perfect metals and dielectric layers, allowing to extract the radiative and non-radiative contributions to the total quality factors of the arrays. Our study shows that this structure can be optimized to obtain low beam divergence (FWHM <10°) and photon extraction efficiencies >50% while keeping a strongly localized mode. These results show that the use of these microcavities would lead to efficient terahertz emitters with a low divergence vertical emission and engineered losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. S. Williams, S. Kumar, H. Callebaut, J. L. Reno, Q. Hu, Terahertz quantum-cascade laser at l = 100 μm using metal waveguide for mode confinement, Applied Physics Letters 83, 2124 (2003).

    Article  Google Scholar 

  2. B. S. Williams, Terahertz quantum-cascade lasers, Nature Photonics 1, 517–525 (2007).

    Article  Google Scholar 

  3. J. L. Adam, I. Kasalynas, J. N. Hovenier, T. O. Klaassen, E. E. Orlova, B. S. Williams, S. Kumar, Q. Hu, J. L. Reno and J. R. Gao, Beam patterns of terahertz quantum cascade lasers with subwavelength cavity dimensions, Applied Physics Letters 88, 151105 (2006)

    Article  Google Scholar 

  4. M. I. Amanti, M. Fischer, G. Scalari, M. Beck and J. Faist, Low-divergence single mode terahertz quantum cascade laser, Nature Photonics 3, 586–590 (2009).

    Article  Google Scholar 

  5. F. Wang, I. Kundu, L. Chen, L. Li, E. H. Linfield, A. G. Davies, S. Moumdji, R. Collombelli, J. Mangeney, J. Tignon and S.S. Dhillon, Engineered far-fields of metal-metal terahertz quantum cascade lasers with integrated planar horn structures, Optics Express 24, 2174–2182 (2016)

    Article  Google Scholar 

  6. T.-Y. Kao, X. Cai, A. W. M. Lee, J. L. Reno, Q. Hu, Antenna coupled photonic wire lasers, Optics Express 23, 17091 (2015)

    Article  Google Scholar 

  7. T.-Y. Kao, J. L. Reno and Q. Hu, Phase-locked laser arrays through global antenna mutual coupling, Nature Photonics 10, 541–546 (2016).

    Article  Google Scholar 

  8. Y. Todorov, L. Tosetto, J. Teissier, A. M. Andrews, P. Klang, R. Colombelli, I. Sagnes, G. Strasser and C. Sirtori, Optical properties of metal-dielectric-metal microcavities in the THz frequency range, Optics Express 18, 13886–13907 (2010).

    Article  Google Scholar 

  9. Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser and C. Sirtori, Ultrastrong light-matter coupling regime with polariton dots, Physical Review Letters 105, 196402 (2010).

    Article  Google Scholar 

  10. J. Madéo, Y. Todorov, A. Gilman, G. Frucci, L. H. Li, A. G. Davies, E. H. Linfield, C. Sirtori and K. M. Dani, Patch antenna microcavity terahertz sources with enhanced emission, Applied Physics Letters 109, 141103 (2016).

    Article  Google Scholar 

  11. M. Justen, C. Bonzon, K. Ohtani, M. Beck, U. Graf and J. Faist, 2D patch antenna array on a double metal quantum cascade laser with >90% coupling to a Gaussian beam and selectable facet transparency at 1.9 THz, Optics Letters 41, 4590–4592 (2016)

    Article  Google Scholar 

  12. L. Xu, C. A. Curwen, P. W. C. Hon, Q.-S. Chen, T. Itoh and B. S. Williams, Metasurface external cavity laser, Applied Physics Letters 107, 221105 (2015)

    Article  Google Scholar 

  13. C. Feuillet-Palma, Y. Todorov, A. Vasanelli and C. Sirtori, Strong near field enhancement in THz nano-antenna arrays, Scientific Reports 3, 1361 (2013)

    Article  Google Scholar 

  14. J. Madéo, Y. Todorov and C. Sirtori, Antenna-coupled microcavities for terahertz emission, Applied Physics Letters 104, 031108 (2014)

    Article  Google Scholar 

  15. E. D. Palik, Handbook of Optical Constants of Solids, Elsevier (1997)

  16. S. Kohen, B. S. Williams and Q. Hu, Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators, Journal of Applied Physics 97, 053106 (2005)

    Article  Google Scholar 

  17. L. Malher, A. Tredicucci, F. Beltram, C. Walther, J. Faist and H. E. Beere, High-power surface emission from terahertz distributed feedback lasers with a dual-slit unit cell, Applied Physics Letters 96, 191109 (2010)

    Article  Google Scholar 

  18. R. Mailloux, Phased Array Antenna Handbook, Norwood: Artech House (2005)

  19. D. Palaferri, Y. Todorov, A. Mottaghizadeh, G. Frucci, G. Biasiol and C. Sirtori, Ultra-subwavelength resonators for high temperature high performance quantum detectors, New Journal of Physics 18, 113016 (2016)

    Article  Google Scholar 

  20. Y. Xie, Y. Li, J. Wang, N. Yang, W. Chu, S. Duan, Power amplification and coherent combination techniques for terahertz quantum cascade lasers, Quantum cascade lasers, Chap.5, Intech (2017)

  21. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, G. W. Turner, Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation, Nature Photonics 1, 288–292 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Kakenhi grant number JP17K14126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Madéo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madéo, J., Pérez-Urquizo, J., Todorov, Y. et al. Engineering the Losses and Beam Divergence in Arrays of Patch Antenna Microcavities for Terahertz Sources. J Infrared Milli Terahz Waves 38, 1321–1330 (2017). https://doi.org/10.1007/s10762-017-0418-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-017-0418-6

Keywords

Navigation