Advertisement

High Efficiency and Wideband 300 GHz Frequency Doubler Based on Six Schottky Diodes

  • Jiangqiao Ding
  • Alain Maestrini
  • Lina Gatilova
  • Antonella Cavanna
  • Shengcai Shi
  • Wen Wu
Article
  • 316 Downloads

Abstract

A high efficiency and wideband 300 GHz frequency doubler based on six Schottky diodes is presented in this paper. This balanced doubler features a compact and robust circuit on a 5-μm-thick, 0.36-mm-wide, and 1-mm-long GaAs membrane, fabricated by LERMA-C2N Schottky process. The conversion efficiency is mainly better than 16% across the wide bandwidth of 266–336 GHz (3 dB fractional bandwidth of 24%) when pumping with 20–60 mW input power (P in) at the room temperature. A peak output power of 14.75 mW at 332 GHz with a 61.18 mW P in, an excellent peak efficiency of 30.5% at 314 GHz with 43.86 mW P in and several frequency points with outstanding efficiency of higher than 25% are delivered. This doubler served as the second stage of the 600 GHz frequency multiplier chain is designed, fabricated, and measured. The performance of this 300 GHz doubler is highlighted comparing to the state-of-art terahertz frequency doublers.

Keywords

Frequency doubler High efficiency Six Schottky diodes Terahertz (THz) Wideband 

Notes

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grant 11127903, 11190012 and 11422326 and the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant Nos. XDB04010300 and XDB23020200. The authors would like to thank S. Caroopen, Observatoire de Paris-LERMA, for the measurement, and C. W. Li, Sichuan Puchuan Electromechanical Equipment Co., Ltd., for the block fabrication.

References

  1. 1.
    J. Zmuidzinas and P. L. Richards, Superconducting detectors and mixers for millimeter and sub-millimeter astrophysics, Proc. IEEE, vol. 92, pp. 1598–1616, 2004.CrossRefGoogle Scholar
  2. 2.
    T. de Graauw, et al., The Herschel-heterodyne instrument for the far-infrared (HIFI): instrument and pre-launch testing, Proc. of SPIE, vol. 7010, 701004, 2008.CrossRefGoogle Scholar
  3. 3.
    I. Mehdi, J. Siles, C. Lee and E. Schlecht, THz diode technology: status, prospects, and applications, Proc. IEEE, vol. 105, pp. 990–1007, 2017.Google Scholar
  4. 4.
    G. Chattopadhyay, E. Schlecht, J. Ward, J. Gill, H. Javadi, F. Maiwald, and I. Mehdi, An all solid-state broadband frequency multiplier chain at 1500 GHz, IEEE Trans. Microw. Theory Tech., vol. 52, no. 5, pp. 1538–1547, 2004.CrossRefGoogle Scholar
  5. 5.
    A. Maestrini, I. Mehdi, J. Siles, et al., Design and characterization of a room temperature all-solid-state electronic source tunable from 2.48 to 2.75 THz, IEEE Trans. THz Sci. Tech., vol. 2, no. 2, pp. 177–185, 2012.CrossRefGoogle Scholar
  6. 6.
    A. Maestrini, J. Ward, J. Gill, et al., A 1.7 to 1.9 THz local oscillator source, IEEE Microw. Wireless Compon. Lett., vol. 14, no. 6, pp. 253–255, 2004.CrossRefGoogle Scholar
  7. 7.
    O. Cojocari, I. Oprea, H. Gibson, and A. Walber, Submm-wave multipliers by film-diode technology, in Proc. EuMW, Oct. 2016.Google Scholar
  8. 8.
    A. Maestrini, J. Ward, C. Tripon-Canseliet, J. Gill, C. Lee, H. Javadi, G. Chattopadhyay and I. Mehdi, In-phase power-combined frequency triplers at 300 GHz, IEEE Microw. Wireless Compon. Lett., Vol. 18, no. 3, pp. 218–220, 2008.CrossRefGoogle Scholar
  9. 9.
    N. Erickson, J. Tuovinen, B. Rizzi, and T. Crowe, A balanced doubler using a planar diode array for 270 GHz, in Proc. 5th Int. Symp. Space THz Tech., May 1994, pp. 409–413.Google Scholar
  10. 10.
    S. C. Shi and J. Inatani, A waveguide-to-microstrip transition with DC/IF return path and offset probe IEEE Trans. Microw. Theory Tech., vol. 45, pp. 442–445, 1997.CrossRefGoogle Scholar
  11. 11.
    E. Schlecht, G. Chattopadhyay, A. Maestrini, D. Pukala, J. Gill, and I. Mehdi, Harmonic balance optimization of terahertz Schottky diode multipliers using an advanced device model, in Proc. 13th Int. Symp. Space THz Tech., Cambridge, MA, Mar. 2002, pp. 187–196.Google Scholar
  12. 12.
    J. Lamb, Miscellaneous data on materials for millimeter and submillimeter optics, Int. J. Infrared and Millim. Waves, vol. 17, no. 12, 1996.Google Scholar
  13. 13.
    J. Treuttel, L. Gatilova, A. Maestrini, et al., A 520–620-GHz Schottky receiver front-end for planetary science and remote sensing with 1070 K–1500 K DSB noise temperature at room temperature, IEEE Trans. THz Sci. Technol., vol. 6, no. 1, pp. 148–155, 2016.CrossRefGoogle Scholar
  14. 14.
    S. Martin, B. Nakamura, A. Fung, et al., Fabrication of 200 to 2700 GHz multiplier devices using GaAs and metal membranes, in IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, May 2001, pp. 1641–1644.Google Scholar
  15. 15.
    A. Maestrini et al., Schottky diode based terahertz frequency multipliers and mixers, Comptes Rendus de l'Académie des Sciences, Physique, vol. 11, no. 7–8, Aug.–Oct. 2010.Google Scholar
  16. 16.
    J. Siles, E. Schlecht, R. Lin, C. Lee, and I. Mehdi, High-efficiency planar Schottky diode based submillimeter-wave frequency multipliers optimized for high-power operation, in Proc. 40th IRMMW-THz, 2015.Google Scholar
  17. 17.
    B. Alderman, M. Henry, H. Sanghera, H. Wang, S. Rea, B. Ellison and P. de Maagt, Schottky diode technology at Rutherford Appleton Laboratory, in Proc. IEEE Int. Conf. Microw. Technol. Comput. Electromagn., May 2011, pp. 4–6.Google Scholar
  18. 18.
    J. V. Siles, A. Maestrini, B. Alderman, et al., A single-waveguide in-phase power-combined frequency doubler at 190 GHz, IEEE Microw. Wireless Compon. Lett., vol. 21, no. 6, pp. 332–334, 2011.Google Scholar
  19. 19.
    V. Drakinskiy, P. Sobis, H. Zhao, T. Bryllert, and J. Stake, Terahertz GaAs Schottky diode mixer and multiplier MIC’s based on e-beam technology, in Proc. 25th Int. Conf. Indium Phosphide Rel. Mater., May 2013, pp. 1–2.Google Scholar
  20. 20.
    N. Alijabbari, M. F. Bauwens, and R. M. Weikle, 160 GHz balanced frequency quadruplers based on quasi-vertical Schottky varactors integrated on micromachined silicon, IEEE Trans. THz Sci. Technol., vol. 4, no. 6, pp. 678–685, 2015.CrossRefGoogle Scholar
  21. 21.
    T. Waliwander, M. Fehilly, and E. O’Brien, An ultra-high efficiency high power Schottky varactor frequency doubler to 180–200 GHz, in Proc. Global Symp. Millim. Waves (GSMM) & ESA Workshop Millim.-Wave Technol. Appl., Helsinki, Finland, Apr. 2016, pp. 1–4.Google Scholar
  22. 22.
    Virginia Diodes Inc. [Online]. Available: http://vadiodes.com/en/ frequency-multipliers, Accessed: Feb. 2017.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.Shanghai Institute of Microsystem and Information Technology and the Key Laboratory of Terahertz Solid-State TechnologyChinese Academy of SciencesShanghaiChina
  3. 3.Laboratoire d’Etudes du Rayonnement et de la Matière en Astrophysique et Atmosphères (LERMA), Observatoire de Paris, Centre National de la Recherche Scientifique (CNRS)PSL Research University, Sorbonne Universités, Université Pierre et Marie CurieParisFrance
  4. 4.Centre de Nanosciences et de Nanotechnologies (C2N), CNRSMarcoussisFrance
  5. 5.Purple Mountain ObservatoryChinese Academy of Sciences and Key Laboratory of Radio AstronomyNanjingChina

Personalised recommendations