Fiber-Drawn Metamaterial for THz Waveguiding and Imaging

Abstract

In this paper, we review the work of our group in fabricating metamaterials for terahertz (THz) applications by fiber drawing. We discuss the fabrication technique and the structures that can be obtained before focusing on two particular applications of terahertz metamaterials, i.e., waveguiding and sub-diffraction imaging. We show the experimental demonstration of THz radiation guidance through hollow core waveguides with metamaterial cladding, where substantial improvements were realized compared to conventional hollow core waveguides, such as reduction of size, greater flexibility, increased single-mode operating regime, and guiding due to magnetic and electric resonances. We also report recent and new experimental work on near- and far-field THz imaging using wire array metamaterials that are capable of resolving features as small as λ/28.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    M. Tonouchi, Nat. Photon. 1, 97 (2007).

    Article  Google Scholar 

  2. 2.

    P. U. Jepsen, D. G. Cooke, M. Koch, Laser Photon. Rev. 5, 124 (2011).

    Article  Google Scholar 

  3. 3.

    R. D. Averitt, A. J. Taylor, J. Phys. Condens. Matter 14, R1357 (2002).

    Article  Google Scholar 

  4. 4.

    B. Ferguson and X. C. Zhang, Nat. Mater. 1, 26 (2002).

    Article  Google Scholar 

  5. 5.

    M. Nagel, M. Först, H. Kurz, J. Phys. Condens. Matter 18, S601-S618 (2006).

    Article  Google Scholar 

  6. 6.

    H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, Laser Photon. Rev. 5, 513 (2011).

    Article  Google Scholar 

  7. 7.

    W. Withayachumnankul, D. Abbott, IEEE Photon. J. 1, 99 (2009).

    Article  Google Scholar 

  8. 8.

    D. R. Smith, J. B. Pendry, M. C. Wiltshire, Science 305, 788 (2004).

    Article  Google Scholar 

  9. 9.

    D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith, Science 314, 977 (2006).

    Article  Google Scholar 

  10. 10.

    G. Shvets, S. Trendafilov, J. B. Pendry, A. Sarychev, Phys. Rev. Lett. 99, 053903 (2007).

    Article  Google Scholar 

  11. 11.

    S. Jahani, Z. Jacob, Optica 1, 96 (2014).

    Article  Google Scholar 

  12. 12.

    D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, S. Schultz, Appl. Phys. Lett. 83, 201 (2003).

    Article  Google Scholar 

  13. 13.

    B. D. F. Casse, H. O. Moser, L. K. Jian, M. Bahou, O. Wilhelmi, B. T. Saw, P. D. Gu, J. Phys.: Conf. Ser. 34, 885 (2006).

    Google Scholar 

  14. 14.

    J.R. Wendt, D.B. Burckel, G.A. Ten Eyck, A.R. Ellis, I. Brener, and M.B. Sinclair, J. Vac. Sci. Technol. B 28, C6O30-C6O33 (2010).

    Google Scholar 

  15. 15.

    A. Reyes-Coronado, M.F. Acosta, R.I. Merino, V.M. Orera, G. Kenanakis, N. Katsarakis, M. Kafesaki, C. Mavidis, J.G. de Abajo, E.N. Economou, and C.M. Soukoulis, Opt. Express 20, 14663–14682 (2012).

    Article  Google Scholar 

  16. 16.

    P. Russell, Science 299, 358 (2003).

    Article  Google Scholar 

  17. 17.

    A. Argyros, J. Lightwave Technol. 27, 1571 (2009).

    Article  Google Scholar 

  18. 18.

    G. F. Taylor, Phys. Rev. 23, 655 (1924).

    Article  Google Scholar 

  19. 19.

    I. W. Donald, B. L. Metcalfe, J. Mater. Sci. 31, 1139 (1996).

    Article  Google Scholar 

  20. 20.

    J. Hou, D. Bird, A. George, S. Maier, B.T. Kuhlmey, and J.C. Knight, Opt. Express 16, 5983–5990 (2008).

    Article  Google Scholar 

  21. 21.

    A. Argyros, ISRN Optics 2013, 785162 (2013).

    Article  Google Scholar 

  22. 22.

    K. Cook, J. Canning, S. Leon-Saval, Z. Reid, M. Hossain, J. Comatti, Y. Luo, and G. Peng, Opt. Lett. 40, 3966–3969 (2015).

    Article  Google Scholar 

  23. 23.

    D.R. Smith and D. Schurig, Phys. Rev Lett. 90, 077405–077405 (2003).

    Article  Google Scholar 

  24. 24.

    A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, Nat. Photon. 7, 948–957 (2013).

    Article  Google Scholar 

  25. 25.

    A. Tuniz, B. T. Kuhlmey, R. Lwin, A. Wang, J. Anthony, R. Leonhardt, S. C. Fleming, Appl. Phys. Lett. 96, 191101 (2010).

    Article  Google Scholar 

  26. 26.

    O. T. Naman, M. R. New-Tolley, R. Lwin, A. Tuniz, A. H. Al-Janabi, I. Karatchevtseva, S. C. Fleming, B. T. Kuhlmey, A. Argyros, Adv. Opt. Mater. 1, 971 (2013).

    Article  Google Scholar 

  27. 27.

    A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, B. T. Kuhlmey, J. Vis. Exp. 68, e4299 (2012).

    Google Scholar 

  28. 28.

    Lord Rayleigh Sec R.S, Philos. Mag. 34, 145 (1892).

    Article  Google Scholar 

  29. 29.

    A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, B. T. Kuhlmey, Nat. Commun. 4, 2706 (2013).

    Article  Google Scholar 

  30. 30.

    A. Tuniz, R. Lwin, A. Argyros, S. C. Fleming, E. M. Pogson, E. Constable, R. A. Lewis, and B. T. Kuhlmey, Opt. Express 19, 16480 (2011)

    Article  Google Scholar 

  31. 31.

    N. Singh, A. Tuniz, R. Lwin, S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, Opt. Mater. Express 2, 1254 (2012).

    Article  Google Scholar 

  32. 32.

    A. Wang, A. Tuniz, P. G. Hunt, E. M. Pogson, R. A. Lewis, A. Bendavid, S. C. Fleming, B. T. Kuhlmey, and M. C. J. Large, Opt. Mater. Express 1, 115 (2011).

    Article  Google Scholar 

  33. 33.

    A. Tuniz, B. Pope, A. Wang, M. C. J. Large, S. Atakaramians, S. Min, E. M. Pogson, R. A. Lewis, A. Bendavid, A. Argyros, S. C. Fleming, and B. T. Kuhlmey, Opt. Express 20, 11924 (2012)

    Article  Google Scholar 

  34. 34.

    S. Fleming, A. Stefani, X. Tang, A. Argyros, D. Kemsley, J. Cordi, R. Lwin, arXiv:1703.07032 (2017).

  35. 35.

    J. G. Hayashi, R. Lwin, A. Stefani, S. Fleming, A. Argyros, B. T. Kuhlmey, in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, 2016, pp. 1–2.

  36. 36.

    A. Barh, B. P. Pal, G. P. Agrawal, R. K. Varshney, B. M. A. Rahman, IEEE J. Sel. Top. Quantum Electron. 22, 365 (2016).

    Article  Google Scholar 

  37. 37.

    A. Markov, H. Guerboukha, M. Skorobogatiy, J. Opt. Soc. Am. B 31, 2587 (2014).

    Article  Google Scholar 

  38. 38.

    S. Atakaramians, S. V. Afshar, T. M. Monro, D. Abbott, Adv. Opt. Photonics 5, 169 (2013).

    Article  Google Scholar 

  39. 39.

    K. Wang, D. M. Mittleman, Nature 432, 376 (2004).

    Article  Google Scholar 

  40. 40.

    G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, J. Opt. Soc. Am. B 17, 851 (2000).

    Article  Google Scholar 

  41. 41.

    M. Navarro-Cía, J. E. Melzer, J. A. Harrington, O. Mitrofanov, J. Infrared Millim. Terahz. Waves 36, 542 (2015).

    Article  Google Scholar 

  42. 42.

    J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, C.-K. Sun, Appl. Phys. Lett. 92, 064105 (2008).

    Article  Google Scholar 

  43. 43.

    H. Bao, K. Nielsen, O. Bang, P. U. Jepsen, Sci. Rep. 5, 7620 (2015).

    Article  Google Scholar 

  44. 44.

    N. Yudasari, J. Anthony, R. Leonhardt, Opt. Express 22, 26042 (2014).

    Article  Google Scholar 

  45. 45.

    J. Anthony, R. Leonhardt, S. G. Leon-Saval, and A. Argyros, Opt Express 19, 18470 (2011).

    Article  Google Scholar 

  46. 46.

    S. Atakaramians, A. Argyros, S. C. Fleming, B. T. Kuhlmey, J. Opt. Soc. Am. B 29, 2462 (2012).

    Article  Google Scholar 

  47. 47.

    S. Atakaramians, A. Argyros, S. C. Fleming, B. T. Kuhlmey, J. Opt. Soc. Am. B 30, 851 (2013).

    Article  Google Scholar 

  48. 48.

    M. Yan, N. A. Mortensen, Opt. Express 17, 14851 (2009).

    Article  Google Scholar 

  49. 49.

    S. Atakaramians, B. T. Kuhlmey, Opt. Lett. 41, 3379 (2016).

    Article  Google Scholar 

  50. 50.

    H. Li, S. Atakaramians, B. T. Kuhlmey, Proc. SPIE 8205, 96680H (2015).

    Google Scholar 

  51. 51.

    H. Li, S. Atakaramians, R. Lwin, X. Tang, Z. Yu, A. Argyros, B. T. Kuhlmey, Optica 3, 941 (2016).

    Article  Google Scholar 

  52. 52.

    H. Li, G. Ren, S. Atakaramians, B. T. Kuhlmey, S. Jian, Opt. Lett. 41, 4004 (2016).

    Article  Google Scholar 

  53. 53.

    A. Stefani, R. Lwin and A. Argyros, in 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Copenhagen, 2016, pp. 1–2.

  54. 54.

    N. M. Litchinitser, A. K. Abeeluck, C. Headley, B. J. Eggleton, Opt. Lett. 27, 1592 (2002)

    Article  Google Scholar 

  55. 55.

    Francesco Poletti, Opt. Express 22, 23807 (2014)

    Article  Google Scholar 

  56. 56.

    V. Setti, L. Vincetti, A. Argyros, Opt. Express 21, 3388 (2013)

    Article  Google Scholar 

  57. 57.

    A. L. S CruzI, V Serrao, C. L Barbosa, M. A. R Franco, C. M. B Cordeiro, A. A Argyros, X. Tang, J. Microwaves. Optoelectron. Electromagn. Appl. 14, 45 (2015).

    Google Scholar 

  58. 58.

    X. Tang, B. T. Kuhlmey, A. Stefani, A. Tuniz, S. C. Fleming, A. Argyros, J. Lightwave Technol. 34, 5317 (2016).

    Article  Google Scholar 

  59. 59.

    W. N. Hardy, L. A. Whitehead, Rev. Sci. Instrum. 52, 213 (1981).

    Article  Google Scholar 

  60. 60.

    P. Gay-Balmaz, O. J. F. Martin, J. Appl. Phys. 92, 2929 (2002).

    Article  Google Scholar 

  61. 61.

    N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).

    Article  Google Scholar 

  62. 62.

    X. Tang, B. Kuhlmey, A. Tuniz, S. Fleming, A. Argyros, in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America), 2016, paper ATh3C.4.

  63. 63.

    A. Tuniz, D. Ireland, L. Poladian, A. Argyros, C. Martijn de Sterke, B. T. Kuhlmey, Opt. Lett. 39, 3286 (2014).

    Article  Google Scholar 

  64. 64.

    K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, B. M. Fischer, Optica 3, 458 (2016).

    Article  Google Scholar 

  65. 65.

    A. Tuniz, B. T. Kuhlmey, Sci. Rep. 5, 17690 (2015).

    Article  Google Scholar 

  66. 66.

    P. A. Belov, Y. Zhao, S. Sudhakaran, A. Alomainy, Y. Hao, Appl. Phys. Lett. 89, 262109 (2006).

    Article  Google Scholar 

  67. 67.

    M. G. Silveirinha, P. A. Belov, C. R. Simovski, Phys. Rev. B 75, 035108 (2007).

    Article  Google Scholar 

  68. 68.

    X. Li, S. He, Y. Jin, Phys. Rev. B 75, 045103 (2007).

    Google Scholar 

  69. 69.

    R. Kotynski, T. Stefaniuk, J. Opt. A 11, 015001 (2009).

    Article  Google Scholar 

  70. 70.

    M.S. Habib, A. Tuniz, K.J. Kaltenecker, Q. Chateiller, I. Perrin, S. Atakaramians, S.C. Fleming, A. Argyros, B.T. Kuhlmey, Opt. Express 24, 17989 (2016).

    Article  Google Scholar 

  71. 71.

    J. G. Hayashi, S. Fleming, B. T. Kuhlmey, and A. Argyros, Opt. Express 23, 29867 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported in part by Australian Research Council (ARC), Centre of Excellence scheme CUDOS (CE110001018), and ARC under the Discovery Early Career Project Award number DE140100614 and Discovery Project DP140104116. This work was performed in part at the Optofab node of the Australian National Fabrication Facility (ANFF), using NCIRS and NSW State Government funding. A.S. acknowledges support of the Eugen Lommel Stipend and Marie Sklodowska-Curie grant of the European Union’s Horizon 2020 research and innovation program (708860).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shaghik Atakaramians.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atakaramians, S., Stefani, A., Li, H. et al. Fiber-Drawn Metamaterial for THz Waveguiding and Imaging. J Infrared Milli Terahz Waves 38, 1162–1178 (2017). https://doi.org/10.1007/s10762-017-0383-0

Download citation

Keywords

  • Metamaterials
  • Terahertz
  • Waveguide
  • Imaging
  • Wire array
  • Fiber drawing