Simultaneous Stabilization of Gyrotron Frequency and Power by PID Double Feedback Control on the Acceleration and Anode Voltages

  • E. M. Khutoryan
  • T. Idehara
  • A. N. Kuleshov
  • Y. Tatematsu
  • Y. Yamaguchi
  • Y. Matsuki
  • T. Fujiwara
Article

Abstract

In this paper, we present the results of simultaneous stabilization of both the frequency and the output power by a double PID feedback control on the acceleration and anode voltages in the 460-GHz gyrotron FU CW GVI, also known as “Gyrotron FU CW GO-1” (according to the nomenclature adopted at Osaka University). The approach used in the experiments is based on the modulation of the cyclotron frequency and the pitch factor (velocity ratio) of the electron beam by varying the acceleration and the anode voltages, respectively. In a long-term experiment, the frequency and power stabilities were made to be better than ±10−6 and ±1%, respectively.

Keywords

Gyrotron Second harmonic Power and frequency stabilization DNP-NMR spectroscopy Sub-THz radiation 

References

  1. 1.
    Q. Z. Ni, E. Daviso, T. V. Can, E. Markhasin, S. K. Jawla, T. M. Swager, R. J. Temkin, J. Herzfeld, and R. G. Griffin, High Frequency Dynamic Nuclear Polarization Acc. Chem. Res. 46, 1933–1941 (2013).CrossRefGoogle Scholar
  2. 2.
    Y. Matsuki et al., J. Magn. Reson. 264, 107–115 (2016)CrossRefGoogle Scholar
  3. 3.
    T. Yamazaki, A. Miyazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, I. Ogawa, T. Idehara, and S. Sabchevski Direct Observation of the Hyperfine Transition of Ground-State Positronium, PRL 108, 253401 (2012).Google Scholar
  4. 4.
    A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, T. Idehara, I. Ogawa, Y. Tatematsu, The Direct Spectroscopy of Positronium Hyperfine Structure Using a Sub-THz Gyrotron, Journal of Infrared, Millimeter, and Terahertz Waves, 2014, Volume 35, Issue 1, pp 91–100.CrossRefGoogle Scholar
  5. 5.
    E. M. Khutoryan, T. Idehara, A. N. Kuleshov, K. Ueda Gyrotron Output Power Stabilization by PID Feedback Control of Heater Current and Anode Voltage, Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 35, no. (2014) 1018–1029.Google Scholar
  6. 6.
    E. M. Khutoryan, T. Idehara, A. N. Kuleshov, Y. Tatematsu, Y. Yamaguchi, Y. Matsuki, T. Fujiwara Stabilization of Gyrotron Frequency by PID Feedback Control on the Acceleration Voltage, Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 36, no. 12 (2015) 1157–1163.Google Scholar
  7. 7.
    Idehara, T., Tatematsu, Y., Yamaguchi, Y., Khutoryan E. M. et al. The Development of 460 GHz gyrotrons for 700 MHz DNP-NMR spectroscopy, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 36, no. 7 (2015) 613–627.CrossRefGoogle Scholar
  8. 8.
    M.I. Petelin and A.S. Sedov, Terahertz Science and Technology, 2, 102 (2009).Google Scholar
  9. 9.
    Sh. Tsimring, Electron Beams and Microwave Vacuum Electronics, Wiley, Hoboken, (2007).Google Scholar
  10. 10.
    A. Fernandez, M. Glyavin, R. Martin et al. Some opportunities to control and stabilize frequency of gyrotrons // Proc. of 4th Int. Conf. IVEC, Seoul, 2003, p. 172.Google Scholar
  11. 11.
    Beringer M H Design studies towards a 4 MW 170 GHz coaxial cavity gyrotron, PhD thesis (Sci. Publ. Karlsruhe Inst. of Technol. Karlsruhe), 2011.Google Scholar
  12. 12.
    K. Ueda, Y. Matsuki, T. Fujiwara, Y. Tatematsu, I. Ogawa, T. Ideahara, Further characterization of 394-GHz Gyrotron FU CW GII with additional PID control system for 600-MHz DNP-SSNMR spectroscopy, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 37 (2016) 825–836.CrossRefGoogle Scholar
  13. 13.
    Idehara T., Khutoryan E. M., Tatematsu Y., et al. High-Speed Frequency Modulation of a 460-GHz Gyrotron for Enhancement of 700-MHz DNP-NMR Spectroscopy, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 36, no. 9 (2015) 819–829.CrossRefGoogle Scholar
  14. 14.
    T. Idehara, M. Pereyaslavets, N. Nishida, K. Yoshida and I. Ogawa Frequency modulation in a submillimeter-wave gyrotron, Phys. Rev. Lett., 81, 1973–1976 (1998).Google Scholar
  15. 15.
    M. Araki, PID control, Control systems, robotics and automation - Vol. II - PID Control, 2010.Google Scholar
  16. 16.
    O. Dumbrajs, T. Idehara, T. Saito and Y. Tatematsu, Calculations of Starting Currents and Frequencies in Frequency-Tunable Gyrotrons, Japanese Journal of Applied Physics 51, (2012) 126601CrossRefGoogle Scholar
  17. 17.
    O. Dumbrajs, E. M. Khutoryan, T. Idehara Hysteresis and Frequency Tunability of Gyrotrons, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 37, no. 6 (2016) 551–560.CrossRefGoogle Scholar
  18. 18.
    I. Ogawa, T. Idehara, T. Okada, S. Maeda, Y. Iwata, R. Pavlichenko, S. Mitsudo, D. Wagner and M. Thumm High Quality Operation of a Submillimeter Wave Gyrotron for Plasma Diagnostics Application. J. Plasma Fusion Res. SERIES, Vol.5 (2002) 205–209.Google Scholar
  19. 19.
    Ran Yan, T. M. Antonsen Jr. and G. S. Nusinovich Analytical theory of low-frequency space charge oscillations in gyrotrons, Phys. Plasmas 15, 103102 (2008)CrossRefGoogle Scholar
  20. 20.
    V. N. Manuilov, V. Yu. Zaslavsky and T. Idehara Two-dimensional numerical simulation of low frequency oscillations of space charge and potentioal in the gyrotron adiabatic trap, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 27 (2006) 1573–1593.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • E. M. Khutoryan
    • 1
    • 2
  • T. Idehara
    • 1
    • 3
  • A. N. Kuleshov
    • 1
    • 2
    • 4
  • Y. Tatematsu
    • 1
  • Y. Yamaguchi
    • 1
  • Y. Matsuki
    • 4
  • T. Fujiwara
    • 4
  1. 1.Research Center for Development of Far-Infrared RegionUniversity of Fukui (FIR UF)Fukui-shiJapan
  2. 2.O. Ya.Usikov Institute for Radiophysics and Electronics IRE NASUKharkivUkraine
  3. 3.Gyro Tech Co. Ltd.Fukui-shiJapan
  4. 4.Institute for Protein ResearchOsaka UniversitySuita-shiJapan

Personalised recommendations