CMOS Integrated Lock-in Readout Circuit for FET Terahertz Detectors

  • Suzana Domingues
  • Daniele Perenzoni
  • Matteo Perenzoni
  • David Stoppa
Article

Abstract

In this paper, a switched-capacitor readout circuit topology integrated with a THz antenna and field-effect transistor detector is analyzed, designed, and fabricated in a 0.13-μm standard CMOS technology. The main objective is to perform amplification and filtering of the signal, as well as subtraction of background in case of modulated source, in order to avoid the need for an external lock-in amplifier, in a compact implementation. A maximum responsivity of 139.7 kV/W, and a corresponding minimum NEP of 2.2 nW/√Hz, was obtained with a two-stage readout circuit at 1 kHz modulation frequency. The presented switched-capacitor circuit is suitable for implementation in pixel arrays due to its compact size and power consumption (0.014 mm2 and 36 μW).

Keywords

CMOS Field-effect transistors Readout circuit Switched-capacitor circuits Terahertz detectors 

References

  1. 1.
    J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and Zimdars, D., “THz imaging and sensing for security applications – explosives, weapons and drugs”, Semicond. Sci. Technol., vol. 20, no. 7, pp. S266–S280, June 2005.Google Scholar
  2. 2.
    U. R. Pfeiffer, “Sub-millimeter Wave Active Imaging with Silicon Integrated Circuits”, in Proc. 36th Int. Conf. Infrared, Millimeter, and Terahertz Waves, Oct. 2011, pp. 1–4.Google Scholar
  3. 3.
    F. Friederich, W. von Spiegel, M. Bauer, F. Meng, M.D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, A. Keil, T. Loffler, R. Henneberger, A. K. Huhn, G. Spickermann, P. H. Bolivar, and H. G. Roskos, “THz Active Imaging Systems With Real-Time Capabilities”, IEEE Trans. on Terahertz Science and Technology, vol. 1, no. 1, pp. 183–200, Sep. 2011.Google Scholar
  4. 4.
    R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H.M. Keller, A. Cathelin, A. Kaiser, and U.R. Pfeiffer, “A 1 k-Pixel Video Camera for 0.7-1.1 Terahertz Imaging Applications in 65-nm CMOS”, IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2999–3012, Dec. 2012.Google Scholar
  5. 5.
    A. Lisauskas, M. Bauer, S. Boppel, M. Mundt, B. Khamaisi, E. Socher, R. Venckevičius, L. Minkevičius, I. Kašalynas, D. Seliuta, G. Valušis, V. Krozer, and H. G. Roskos, “Exploration of Terahertz Imaging with Silicon MOSFETs”, J. Infrared, Millim.THz Waves,, vol. 35, no. 1, pp. 63–80, Jan. 2014.Google Scholar
  6. 6.
    F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and, W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors”, Opt. Exp., vol. 19, no. 8, pp. 7827–7832, April 2011.Google Scholar
  7. 7.
    D. Y. Kim, S. Park, R. Han, K. K. O, “820-GHz Imaging Array Using Diode-Connected NMOS Transistors in 130-nm CMOS”, in Symposium on VLSI Circuits, June 2013, pp. 12–14.Google Scholar
  8. 8.
    S-T. Han, W. K. Park, Y-H. Ahn, W-J. Lee, and H. S. Chun, “Development of a compact sub-terahertz gyrotron and its application to t-ray real-time imaging for food inspection”, in Proc. 37th Int. Conf. Infrared, Millimeter, and Terahertz Waves, Sept. 2012, pp. 1–2.Google Scholar
  9. 9.
    S. M. Kim, F. Hatami, J. S. Harris, A. W. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, and G. Harris, “Biomedical terahertz imaging with a quantum cascade laser”, Appl. Phys. Lett., vol. 88, no. 15, p. 153903, April 2006.Google Scholar
  10. 10.
    Y. C. Sim, K-M. Ahn, J. Y. Park, C-S. Park, and J-H. Son, “Temperature-dependant terahertz imaging of excised oral malignant melanoma”, IEEE Trans. on Terahertz Science and Technology, vol. 3, no. 4, pp. 368–373, July 2013.Google Scholar
  11. 11.
    Tohme, L., Ducournau, G., Blin, S., Coquillat, D., Nouvel, P., Penarier, A., Knap, W., and Lampin, J.F., “0.2 THz wireless communication using plasma-wave transistor detector”, in Proc. 38th Int. Conf. Infrared, Millimeter, and Terahertz Waves, Sept. 2013, p. 1.Google Scholar
  12. 12.
    F. Schuster, H. Videlier, A. Dupret, D. Coquillat, M. Sakowicz, J-P. Rostaing, M. Tchagaspanian, B. Giffard, and W. Knap, “A Broadband THz Imager in a Low-Cost CMOS Technology”, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2011, pp. 42–43.Google Scholar
  13. 13.
    A. Boukhayma, J.-P. Rostaing, A. Mollard, F. Guellec, M. Benetti, G. Ducournau, J.-F. Lampin, A. Dupret, C. Enz, M. Tchagaspanian, J.-A. Nicolas, “A 533pW NEP 31 × 31 pixel THz image sensor based on in-pixel demodulation,” 40th European Solid State Circuits Conference (ESSCIRC), pp.303,306, 22–26 Sept. 2014.Google Scholar
  14. 14.
    M. Dyakonov, and M. S. Shur, “Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current”, Phys. Rev. Lett., vol. 71, no. 15, pp. 2465–2468, Oct. 1993.Google Scholar
  15. 15.
    F. Schuster, H. Videlier, A. Dupret, D. Coquillat, M. Sakowicz, J-P. Rostaing, M. Tchagaspanian, B. Giffard, and W. Knap, “A Broadband THz Imager in a Low-Cost CMOS Technology”, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2011, pp. 42–43.Google Scholar
  16. 16.
    H. Sherry, J. Grzyb, Y. Zhao, R. Al Hadi, A. Cathelin, A. Kaiser, and U. R. Pfeiffer, “A 1kPixel CMOS Camera Chip for 25fps Real-Time Terahertz Imaging Applications”, in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2012, pp. 252–254.Google Scholar
  17. 17.
    S. Domingues, D. Perenzoni, V. Giliberti, A. Di Gaspare, M. Ortolani, M. Perenzoni, and D. Stoppa, “Analysis of CMOS 0.13μm test structures for 0.6 to 1.5THz imaging”, in Proc. 38th Int. Conf. Infrared, Millimeter, and Terahertz Waves, Sept. 2013, pp. 1–2.Google Scholar
  18. 18.
    S. Domingues, D. Perenzoni, M. Perenzoni, and D. Stoppa, “Design and Characterization of a Readout Circuit for FET-based THz Imaging”, in Proc. SPIE, vol. 9141, April 2014, p. 914105.Google Scholar
  19. 19.
    S. Domingues, M. Perenzoni, D. Stoppa, A.D. Capobianco, and F. Sacchetto, “A CMOS THz staring imager with in-pixel electronics”, in Proc.7th Conference on Ph.D. Research in Microelectronics and Electronics, July 2011, pp. 81–84.Google Scholar
  20. 20.
    A. M. Fowler, and I. Gatley, “Demonstration Of An Algorithm For Read-Noise Reduction In Infrared Arrays”, The Astrophysical Journal, 353:L33-L34, 10 April 1990.Google Scholar
  21. 21.
    C. Enz, and A. Boukhayma, “Recent trends in low-frequency noise reduction techniques for integrated circuits”, International Conference on Noise and Fluctuations (ICNF), Xian, pp. 1–6, 2015.Google Scholar
  22. 22.
    M. Ali, M. Perenzoni, D. Stoppa, “A Methodology to Measure Input Power and Effective Area for Characterization of Direct THz Detectors”, IEEE Trans. on Instrumentation and Measurements, vol.65, no.6, pp.1225-1231, May 2016.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations