Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy

Abstract

Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Tonouchi M. Cutting-edge terahertz technology[J]. Nature photonics, 2007, 1(2): 97–105.

    Article  Google Scholar 

  2. 2.

    Akiba T, Kaneko N, Suizu K, et al. Real-time terahertz wave sensing via infrared detection interacted with evanescent terahertz waves[J]. Optical Review, 2015, 22(1): 166–169.

    Article  Google Scholar 

  3. 3.

    Zhao X, Yuan C, Zhu L, et al. Graphene-based tunable terahertz plasmon-induced transparency metamaterial[J]. Nanoscale, 2016, 8(33): 15273–15280.

    Article  Google Scholar 

  4. 4.

    Huang Z, Zhou W, Tong J, et al. Terahertz Detection: Extreme Sensitivity of Room-Temperature Photoelectric Effect for Terahertz Detection (Adv. Mater. 1/2016)[J]. Advanced Materials, 2016, 28(1): 111–111.

    Article  Google Scholar 

  5. 5.

    Yin H, Cross A W, Zhang L, et al. Compact millimetre wave and terahertz radiation sources driven by pseudospark-generated electron beam[C]//IET Colloquium on Millimetre-Wave and Terahertz Engineering & Technology 2016. IET, 2016: 1–3.

  6. 6.

    Liu S, Zhang C, Hu M, et al. Coherent and tunable terahertz radiation from graphene surface plasmon polaritons excited by an electron beam[J]. Applied Physics Letters, 2014, 104(20): 201104.

    Article  Google Scholar 

  7. 7.

    Gong S, Zhao T, Sanderson M, et al. Transformation of surface plasmon polaritons to radiation in graphene in terahertz regime[J]. Applied Physics Letters, 2015, 106(22).

  8. 8.

    Mao Q, Wen Q Y, Tian W, et al. High-speed and broadband terahertz wave modulators based on large-area graphene field-effect transistors[J]. Optics letters, 2014, 39(19): 5649–5652.

    Article  Google Scholar 

  9. 9.

    Graydon O. Graphene: Terahertz modulator[J]. Nature Photonics, 2015, 9(12): 780–780.

    Google Scholar 

  10. 10.

    Sensale-Rodriguez B, Yan R, Kelly M M, et al. Broadband graphene terahertz modulators enabled by intraband transitions[J]. Nature communications, 2012, 3: 780.

    Article  Google Scholar 

  11. 11.

    Vicarelli L, Vitiello M S, Coquillat D, et al. Graphene field-effect transistors as room-temperature terahertz detectors[J]. Nature materials, 2012, 11(10): 865–871.

    Article  Google Scholar 

  12. 12.

    Spirito D, Coquillat D, De Bonis S L, et al. High performance bilayer-graphene terahertz detectors[J]. Applied Physics Letters, 2014, 104(6): 061111.

    Article  Google Scholar 

  13. 13.

    Cai X, Sushkov A B, Suess R J, et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene[J]. Nature nanotechnology, 2014, 9(10): 814–819.

    Article  Google Scholar 

  14. 14.

    Andryieuski A, Lavrinenko A V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach[J]. Optics express, 2013, 21(7): 9144–9155.

    Article  Google Scholar 

  15. 15.

    Xu B, Gu C, Li Z, et al. A novel structure for tunable terahertz absorber based on graphene[J]. Optics express, 2013, 21(20): 23803–23811.

    Article  Google Scholar 

  16. 16.

    Woo J M, Kim M S, Kim H W, et al. Graphene based salisbury screen for terahertz absorber[J]. Applied Physics Letters, 2014, 104(8): 081106.

    Article  Google Scholar 

  17. 17.

    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. science, 2004, 306(5696): 666–669.

    Article  Google Scholar 

  18. 18.

    Morozov S V, Novoselov K S, Schedin F, et al. Two-dimensional electron and hole gases at the surface of graphite[J]. Physical Review B, 2005, 72(20): 201401.

    Article  Google Scholar 

  19. 19.

    Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007.

  20. 20.

    Buron J D, Pizzocchero F, Jepsen P U, et al. Graphene mobility mapping[J]. Scientific reports, 2015, 5.

  21. 21.

    Buron J D, Pizzocchero F, Jessen B S, et al. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe[J]. Nano letters, 2014, 14(11): 6348–6355.

    Article  Google Scholar 

  22. 22.

    Tomaino J, Jameson A, Paul M. High-Contrast Imaging of Graphene via Time-Domain Terahertz Spectroscopy[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(8): 839–845.

    Article  Google Scholar 

  23. 23.

    Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging–Modern techniques and applications[J]. Laser & Photonics Reviews, 2011, 5(1): 124–166.

    Article  Google Scholar 

  24. 24.

    Shen Y C, Lo T, Taday P F, et al. Detection and identification of explosives using terahertz pulsed spectroscopic imaging[J]. Applied Physics Letters, 2005, 86(24): 241116.

    Article  Google Scholar 

  25. 25.

    Ponseca C S, Sundström V. Understanding charge carrier dynamics in solar cell materials using time resolved terahertz spectroscopy[C]//2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2015: 1–1.

  26. 26.

    Joyce H J, Docherty C J, Gao Q, et al. Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy[J]. Nanotechnology, 2013, 24(21): 214006.

    Article  Google Scholar 

  27. 27.

    Krbal M, Kucharik J, Sopha H, et al. Charge transport in anodic TiO2 nanotubes studied by terahertz spectroscopy[J]. physica status solidi (RRL)-Rapid Research Letters, 2016, 10(9): 691–695.

  28. 28.

    Tomaino J L, Jameson A D, Kevek J W, et al. Terahertz imaging and spectroscopy of large-area single-layer graphene[J]. Optics express, 2011, 19(1): 141–146.

    Article  Google Scholar 

  29. 29.

    Horng J, Chen C F, Geng B, et al. Drude conductivity of Dirac fermions in graphene[J]. Physical Review B, 2011, 83(16): 165113.

    Article  Google Scholar 

  30. 30.

    Dawlaty J M, Shivaraman S, Strait J, et al. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible[J]. Applied Physics Letters, 2008, 93(13): 131905.

    Article  Google Scholar 

  31. 31.

    Jepsen P U, Fischer B M. Dynamic range in terahertz time-domain transmission and reflection spectroscopy[J]. Optics letters, 2005, 30(1): 29–31.

    Article  Google Scholar 

  32. 32.

    Smith N V. Classical generalization of the Drude formula for the optical conductivity[J]. Physical Review B, 2001, 64(15): 155106.

    Article  Google Scholar 

  33. 33.

    Buron J D, Petersen D H, Bøggild P, et al. Graphene conductance uniformity mapping[J]. Nano letters, 2012, 12(10): 5074–5081.

    Article  Google Scholar 

  34. 34.

    Moser J, Verdaguer A, Jiménez D, et al. The environment of graphene probed by electrostatic force microscopy[J]. Applied Physics Letters, 2008, 92(12): 123507.

    Article  Google Scholar 

  35. 35.

    Yavari F, Kritzinger C, Gaire C, et al. Tunable bandgap in graphene by the controlled adsorption of water molecules[J]. small, 2010, 6(22): 2535–2538.

  36. 36.

    Leenaerts O, Partoens B, Peeters F M. Water on graphene: Hydrophobicity and dipole moment using density functional theory[J]. Physical Review B, 2009, 79(23): 235440.

    Article  Google Scholar 

  37. 37.

    Docherty C J, Lin C T, Joyce H J, et al. Extreme sensitivity of graphene photoconductivity to environmental gases[J]. Nature communications, 2012, 3: 1228.

    Article  Google Scholar 

  38. 38.

    Crowther A C, Ghassaei A, Jung N, et al. Strong charge-transfer doping of 1 to 10 layer graphene by NO2[J]. ACS nano, 2012, 6(2): 1865–1875.

    Article  Google Scholar 

  39. 39.

    Strobel P, Riedel M, Ristein J, et al. Surface transfer doping of diamond[J]. Nature, 2004, 430(6998): 439–441.

    Article  Google Scholar 

  40. 40.

    Chen W, Qi D, Gao X, et al. Surface transfer doping of semiconductors[J]. Progress in Surface Science, 2009, 84(9): 279–321.

    Article  Google Scholar 

  41. 41.

    Chen Z Y, Santoso I, Wang R, et al. Surface transfer hole doping of epitaxial graphene using MoO3 thin film[J]. 2010.

  42. 42.

    Chen W, Chen S, Qi D C, et al. Surface transfer p-type doping of epitaxial graphene[J]. Journal of the American Chemical Society, 2007, 129(34): 10418–10422.

    Article  Google Scholar 

  43. 43.

    Kalbac M, Reina-Cecco A, Farhat H, et al. The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene[J]. Acs Nano, 2010, 4(10): 6055–6063.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Program of Fundamental Research of China under Contract No.2014CB339801, National Natural Science Foundation of China under Contract No.11305030 and Contract No.61231005, and Fundamental Research Funds for the Central Universities (FRFCU) under Contract No.ZYGX2016KYQD113.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Min Hu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Hu, M., Zhou, J. et al. Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy. J Infrared Milli Terahz Waves 38, 874–884 (2017). https://doi.org/10.1007/s10762-017-0362-5

Download citation

Keywords

  • Graphene conductivity
  • Terahertz spectroscopy
  • Drude-Smith formula
  • Laser excitation