Art Painting Diagnostic Before Restoration with Terahertz and Millimeter Waves

  • Jean-Paul Guillet
  • M. Roux
  • K. Wang
  • X. Ma
  • F. Fauquet
  • H. Balacey
  • B. Recur
  • F. Darracq
  • P. Mounaix
Article

Abstract

Art painting diagnostic is commonly performed using electromagnetic waves at wavelengths from terahertz to X-ray. These former techniques are essential in conservation and art history research, but they could be also very useful for restoring artwork. While most studies use time domain imaging technique, in this study, a painting has been investigated using both time domain imaging (TDI) and frequency-modulated continuous wave (FMCW) system in the millimeter frequency range. By applying these systems to a painting of the eighteenth century, we detect and analyze the structure of some defects. This study underlines the differences between FMCW and TDI. We present the advantages and disadvantages of each technique on a real artwork.

Keywords

Terahertz imaging Art restoration Painting Time domain imaging Frequency-modulated continuous wave 

References

  1. 1.
    F. Ospald, W. Zouaghi, R. Beigang, C. Matheis, J. Jonuscheit, B. Recur, J.-P. Guillet, P. Mounaix, W. Vleugels, P. V. Bosom, L. V. González, I. López, R. M. Edo, Y. Sternberg, et M. Vandewal, « Aeronautics composite material inspection with a terahertz time-domain spectroscopy system », Opt. Eng., vol. 53, no 3, 2014.Google Scholar
  2. 2.
    C. Roman, O. Ichim, L. Sarger, V. Vigneras, et P. Mounaix, « Terahertz dielectric characterisation of polymethacrylimide rigid foam:: The perfect sheer plate? », Electron. Lett., vol. 40, no 19, p. 1, 2004.Google Scholar
  3. 3.
    J. P. Guillet, B. Recur, L. Frederique, B. Bousquet, L. Canioni, I. Manek-Hönninger, P. Desbarats, et P. Mounaix, « Review of terahertz tomography techniques », J. Infrared, Millimeter, Terahertz Waves, vol. 35, no 4, p. 382‑411, 2014.Google Scholar
  4. 4.
    J. B. Jackson, J. Bowen, G. Walker, J. Labaune, G. Mourou, M. Menu, et K. Fukunaga, « A survey of terahertz applications in cultural heritage conservation science », IEEE Trans. Terahertz Sci. Technol., vol. 1, no 1, p. 220‑231, 2011.Google Scholar
  5. 5.
    K. Fukunaga et M. Picollo, « Characterisation of works of art », in Terahertz Spectroscopy and Imaging, Springer, 2012, p. 521‑538.Google Scholar
  6. 6.
    J. Labaune, J. B. Jackson, S. Pagès-Camagna, I. N. Duling, M. Menu, et G. A. Mourou, « Papyrus imaging with terahertz time domain spectroscopy », Appl. Phys. A, vol. 100, no 3, p. 607‑612, 2010.Google Scholar
  7. 7.
    E. Abraham, A. Younus, A. El Fatimy, J.-C. Delagnes, E. Nguéma, et P. Mounaix, « Broadband terahertz imaging of documents written with lead pencils », Opt. Commun., vol. 282, no 15, p. 3104‑3107, 2009.Google Scholar
  8. 8.
    K. Fukunaga, Y. Ogawa, S. Hayashi, et I. Hosako, « Application of terahertz spectroscopy for character recognition in a medieval manuscript », IEICE Electron. Express, vol. 5, no 7, p. 223‑228, 2008.Google Scholar
  9. 9.
    R. Durand, J. P. Guillet, B. Recur, P. Mounaix, M. Fabre, et S. Genot, « X-ray versus 3D terahertz imaging for sigillography science », in International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2013.Google Scholar
  10. 10.
    D. Giovannacci, D. Martos-Levif, G. C. Walker, M. Menu, et V. Detalle, « Terahertz applications in cultural heritage: case studies », in Fundamentals of Laser Assisted Micro-and Nanotechnologies 2013, 2013, p. 906510.Google Scholar
  11. 11.
    G. C. Walker, J. W. Bowen, W. Matthews, S. Roychowdhury, J. Labaune, G. Mourou, M. Menu, I. Hodder, et J. B. Jackson, « Sub-surface terahertz imaging through uneven surfaces: visualizing Neolithic wall paintings in Çatalhöyük », Opt. Express, vol. 21, no 7, p. 8126‑8134, 2013.Google Scholar
  12. 12.
    K. Fukunaga, Y. Ogawa, S. Hayashi, et I. Hosako, « Terahertz spectroscopy for art conservation », IEICE Electron. Express, vol. 4, no 8, p. 258‑263, 2007.Google Scholar
  13. 13.
    A. J. L. Adam, P. C. M. Planken, S. Meloni, et J. Dik, « TeraHertz imaging of hidden paint layers on canvas », Opt. Express, vol. 17, no 5, p. 3407‑3416, 2009.Google Scholar
  14. 14.
    C. L. Koch-Dandolo, T. Filtenborg, K. Fukunaga, J. Skou-Hansen, et P. U. Jepsen, « Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting », Appl. Opt., vol. 54, no 16, p. 5123‑5129, 2015.Google Scholar
  15. 15.
    C. L. K. Dandolo et P. U. Jepsen, « Wall Painting Investigation by Means of Non-invasive Terahertz Time-Domain Imaging (THz-TDI): Inspection of Subsurface Structures Buried in Historical Plasters », J. Infrared, Millimeter, Terahertz Waves, vol. 37, no 2, p. 198‑208, 2016.Google Scholar
  16. 16.
    Z. Zhang, K. Wang, Y. Lei, Z. Zhang, Y. Zhao, C. Li, A. Gu, N. Shi, K. Zhao, et H. Zhan, « Non-destructive detection of pigments in oil painting by using terahertz tomography », Sci China-Phys Mech As-tron, vol. 58, p. 124202, 2015.CrossRefGoogle Scholar
  17. 17.
    E. Cristofani, F. Friederich, S. Wohnsiedler, C. Matheis, J. Jonuscheit, M. Vandewal, et R. Beigang, « Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection », Opt. Eng., vol. 53, no 3, p. 31211, 2014.Google Scholar
  18. 18.
    A. Redo-Sanchez, B. Heshmat, A. Aghasi, S. Naqvi, M. Zhang, J. Romberg, et R. Raskar, « Terahertz time-gated spectral imaging for content extraction through layered structures », Nat. Commun., vol. 7, p. 12665, sept. 2016.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.University of Bordeaux, IMS Laboratory, UMR CNRS 5218TALENCEFrance
  2. 2.L’atelier des RenaissancesSaucatsFrance
  3. 3.Wuhan National Laboratory for Optoelectronics, School of Optoelectronic Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  4. 4.Noctylio SASBordeauxFrance

Personalised recommendations