Skip to main content
Log in

Enhancement of Coherent THz Smith-Purcell Radiation by Resonance Overlapping

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Frequency-locked coherent Smith-Purcell Radiation (SPR) is emitted when a train of pre-bunched electron beam passes close to the surface of a metallic grating, which develops an energy density spectrum restricted to harmonics of the bunching frequency. For the lamellar grating with narrow grooves, the radiation spectrum from a single electron can also have a feature of narrow band, which is related to the grating structure and the beam energy. The combination of them is proposed in this paper. By properly choosing the parameters, the peak frequency of single electron radiation can be overlapped with the harmonics of the bunching frequency of the electron bunch train, leading to the generation of extremely intense narrow-band THz radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Ferguson and X. C. Zhang, Nature Mater. 1, 26 (2002).

  2. I. Mukhopadhyay, J. of IRMM&THz Waves 24, 1063 (2003).

  3. J. K. Gao, Y. L. Qin, B. Deng, H. Q. Wang, J. Li and X. Li, J. of IRMM&THz Waves 37, 373 (2016).

  4. B. S. Williams, Nat. Photonics 1, 517 (2007).

  5. O. Hatem, J. R. Freeman, J. E. Cunningham, P. J. Cannard, M. J. Robertson, E. H. Linfield, A. G. Davies and D. G. Moodie, J. of IRMM&THz Waves 37, 415 (2016).

  6. R. Sinha, M. Karabiyik, A. Ahmadivand, C. Al-Amin, P. K. Vabbina, M. Shur and N. Pala, J. of IRMM&THz Waves 37, 230 (2016).

  7. G. P. Gallerano and S. Biedron, in: Proceedings of the 2004 FEL Conference, Trieste, Italy, 2004, p. 216.

  8. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G. S. Park, J. Park, and R. J. Temkin, IEEE Transactions on Terahertz Science and Technology 1, 54 (2011).

  9. H. Li, Y. Lu, Z. He, Q. Jia and L. Wang, J. of IRMM&THz Waves 37, 649 (2016).

  10. G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. R. Neil, and G. P. Williams, Nature (London) 420, 153 (2002).

  11. J. Zhang, H. Deng, X. Lin, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 693, 23 (2012).

  12. S. Smith and E. Purcell, Phys. Rev. 92, 1069 (1953).

  13. G. Doucas, J. H. Mulvey, M. Omori, J. Walsh, and M. F. Kimmitt, Phys. Rev. Lett. 69, 1761 (1992).

  14. J. Urata, M. Goldstein, M. F. Kimmitt et al., Phys. Rev. Lett. 80, 516 (1998).

  15. S. E. Korbly, A. S. Kesar, J. R. Sirigiri, and R. J. Temkin, Phys. Rev. Lett. 94, 054803 (2005).

  16. Y. Li and K.-J. Kim, Appl. Phys. Lett. 92, 014101 (2008).

  17. Y. Li, Y. E. Sun, and K.-J. Kim, Phys. Rev. ST Accel. Beams 11, 080701 (2008).

  18. D. Li, M. Hangyo, Y. Tsunawaki, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 674, 20 (2012).

  19. W. Liu, D. Wu, C. Tang, and W. Huang, in Proceedings of the 2010 Internatinal Particle Accelerator Conference, Kyoto, Japan, 2010, p. 2215.

  20. D. Li, Z. Shi, Z. Yang, et al., J. of IRMM&THz Waves, 31 (2010) 1271.

  21. Y. Shen, X. Yang, G. L. Carr, Y. Hidaka, J. B. Murphy, X. Wang, Phys. Rev. Lett. 107, 204801 (2011).

  22. W. Liu and Z. Xu, New J. Phys. 16, 073006 (2014).

  23. G. Kube, Nucl. Instrum. Methods Phys. Res., Sect. B 227, 180 (2005).

  24. T. di Francia, Nuovo Cimento. 16, 61 (1960).

  25. A. S. Kesar, Phys. Rev. ST Accel. Beams 8, 072801 (2005).

  26. A. S. Kesar, M. Hess, S. E. Korbly, and R. J. Temkin, Phys. Rev. E 71, 016501 (2005).

  27. A. S. Kesar, Phys. Rev. ST Accel. Beams 13, 022804 (2010).

  28. P. M. van den Berg, J. Opt. Soc. Am. 63, 1588 (1973).

  29. P. M. van den Berg, J. Opt. Soc. Am. 63, 689 (1973).

  30. P. M. van den Berg and T. H. Tan, J. Opt. Soc. Am. 64, 325 (1974).

  31. O. Haeberlé, P. Rullhusen, J.-M. Salomé, and N. Maene, Phys. Rev. E 49, 3340 (1994).

  32. H. L. Andrews and C. A. Brau, Phys. Rev. ST Accel. Beams 7, 070701 (2004).

  33. M. Cao, W. Liu, Y. Wang, and K. Li, Phys. Plasmas 22, 033103 (2015).

  34. Y. Shibata, et al., Phys. Rev. E 57, 1061 (1998).

  35. Z. He, Y. Xu, W. Li, Q. Jia, Nucl. Instrum. Methods Phys. Res., Sect. A 775, 77 (2015), and refereneces there in.

  36. K. Floettmann, ASTRA User Manual, http://www.desy.de/~mpyflo/Astra_ dokumentation/.

Download references

Acknowledgments

This work is supported by Fundamental Research Funds for the Central Universities under Contracts No. WK2310000042 and No. WK2310000047, Chinese National Foundation of Natural Sciences under Contracts No. 11205152, No.11375199, and No.11175182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang He.

Additional information

Weiwei Li and Yuanfang Xu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Xu, Y., Lu, Y. et al. Enhancement of Coherent THz Smith-Purcell Radiation by Resonance Overlapping. J Infrared Milli Terahz Waves 38, 12–21 (2017). https://doi.org/10.1007/s10762-016-0304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0304-7

Keywords

Navigation