Skip to main content
Log in

Design and Experimental Demonstration of Cherenkov Radiation Source Based on Metallic Photonic Crystal Slow Wave Structure

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper presents a kind of Cherenkov radiation source based on metallic photonic crystal (MPC) slow-wave structure (SWS) cavity. The Cherenkov source designed by linear theory works at 34.7 GHz when the cathode voltage is 550 kV. The three-dimensional particle-in-cell (PIC) simulation of the SWS shows the operating frequency of 35.56 GHz with a single TM01 mode is basically consistent with the theoretically one under the same parameters. An experiment was implemented to testify the results of theory and PIC simulation. The experimental system includes a cathode emitting unit, the SWS, a magnetic system, an output antenna, and detectors. Experimental results show that the operating frequency through detecting the retarded time of wave propagation in waveguides is around 35.5 GHz with a single TM01 mode and an output power reaching 54 MW. It indicates that the MPC structure can reduce mode competition. The purpose of the paper is to show in theory and in preliminary experiment that a SWS with PBG can produce microwaves in TM01 mode. But it still provides a good experimental and theoretical foundation for designing high-power microwave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. John, Phys. Rev. Lett. 58 23 2486-2489 (1987)

    Article  Google Scholar 

  2. E. Yablonovitch, Phys. Rev. Lett. 58 20 2059-2062 (1987)

    Article  Google Scholar 

  3. E. I. Smirnova, C. Chen, M. A. Shapiro, Sirigirl J R and Temkin R J, J. App. Phys.91 3 960-968 (2002)

    Article  Google Scholar 

  4. A. I. Nashed, S. K. Chaudhuri and S. Safavi-Naeini, IEEE Trans. Terahertz Sci. and Technol. 2 6 642-651 (2012)

    Article  Google Scholar 

  5. X. J. Liu, H. Lei, T. Yu, J. J. Feng and F. J. Liao, Opt. Comm. 281 1 102-107 (2008)

    Article  Google Scholar 

  6. B. Chen, B. L. Qian and H. H. Zhong, A High Power Laser and Particle Beams. 18 862-866 (2006)

  7. J. R. Sirigiri, K. E. Kreischer, J. Machuzak, I. Mastovsky, M. A. Shapiro and R. J. Temkin, Phys. Rev. Lett. 86 24 5628-5631 (2001)

    Article  Google Scholar 

  8. E. I. Smirnova, A. S. Kesar, I. Mastovsky, M. A. Shapiro and R. J. Temkin, Phys. Rev. Lett. 95 7 074801-1-5 (2005)

  9. R. A. Marsh, M. A. Shapiro, R. J. Temkin, Proc. PAC07, June 25-29, Albuquerque, USA, p. 3005-3007 (2007)

  10. E. A. Nanni, S. M. Lewis, M. A. Shapiro, R. G. Griffin and R. J. Temkin, Phys. Rev. Letts. 111 235101-1-5 (2013)

  11. Y. B. Gong, H. R. Yin, Y. Y. Wei, L. N. Yue, M. J. Deng, Z. G. Lu, X. Xu, W. X. Wang, P. K. Liu and F. J. Liao, IEEE Trans. Electron Devices 57 1137-1145 (2010)

    Article  Google Scholar 

  12. G. O. Vela, M. S. Miller, R. W. Grow and J. M. Baird, 2006 Int. Electron. Conf., April 25-27, Monterey, USA, p.425 (2006)

  13. S. G. Jeon, Y. M. Shin, J. I. Kim, S. T. Han, K. H. Jang, J. K. So and G. S. Park 2004 Int. Electron. Conf., Apr. 27-29, Monterey, USA, p.122 (2004)

  14. K. H. Jang, S. G. Jeon, J. Kim, J. H. Won, J. K. So, S. H. Bak, A. Srivastava, S. S. Jung and G. S. Park, Appl. Phys. Lett. 93 21 211104 (2008)

    Article  Google Scholar 

  15. X. Gao, Z. Q. Yang, Y. Xu, L. M. Qi, D. Z. Li, Z. J. Shi, F. Lan and Z. Liang, Nucl. Instrum. and Methods in Phys. Res. A 592 3 292-296 (2008)

  16. X. Gao, Z. Q. Yang, L. M. Qi, F. Lan, Z. J. Shi, D. Z. Li and Z. Liang, Chin. Phys. B 18 6 2452-2458 (2009)

    Article  Google Scholar 

  17. X. Gao, Z. Q. Yang, J. Hou, L. M. Qi, D. Z. Li and Z. Liang, Acta Phys. Sin. 58 2 1105-1109 (2009)

    Google Scholar 

  18. H. Z. Guo, Y. Carmel, W. Lou, L. M. Chen, J. Rogers ABE D. K., A. Bromborsky, W. Destler and V. L. Granatstein, IEEE Trans. Microw. Theory 40 11 2086-2094 (1992)

  19. D. M. Goebel, E. A. Adler, E. S. Ponti, J. Feicht, R. L. Eisenhart and R. W. Lemke, IEEE Trans. Plasma Sci. 27 3 800-809 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

Project supported by the National Natural Science Foundation of China (Grant No. 61275043), the Young Scientists Fund of National Natural Science Foundation of China (Grant Nos. 61501302 and 61307048), China Postdoctoral Science Foundation Funded Project (Grant No.2016M592534) and Shenzhen Kexin Ju funds (Grant No. CXB201105050064A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Biao Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Yang, ZQ. & Ouyang, ZB. Design and Experimental Demonstration of Cherenkov Radiation Source Based on Metallic Photonic Crystal Slow Wave Structure. J Infrared Milli Terahz Waves 37, 1061–1068 (2016). https://doi.org/10.1007/s10762-016-0293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0293-6

Keywords

PACS

Navigation