Excess Propagation Loss of Semi-Closed Obstacles for Inter/Intra-Device Communications in the Millimeter-Wave Range

  • Ke Guan
  • Bo AiEmail author
  • Alexander Fricke
  • Danping He
  • Zhangdui Zhong
  • David W. Matolak
  • Thomas Kürner


The ever decreasing geometrical dimensions of electronic devices makes miscellaneous cables or connectors of relatively large dimensions unwanted. Thus, wireless inter/intra-device communications in the millimeter-wave range become a topic of recent interest. In this paper, the excess losses of three groups of typical semi-closed obstacles (connectors, heatsinks, and printed circuit boards) in inter/intra-device communications are measured and empirically modeled. Specific coefficients for each of the obstacles are estimated to describe the excess loss in the millimeter-wave band. Validation shows that the empirical model structure combined with the specific coefficients can provide an effective and simple way to include various semi-closed obstacles in the network planning, simulation, and design of inter/intra-device communications.


Millimeter wave Inter/intra-device communications Propagation modeling Semi-closed obstacle 



The authors would like to thank Prof. Jörg Schöbel from the Institut für Hochfrequenztechnik at Technische Universität Braunschweig, Germany for providing the W-Band measurement equipment and complementary accessories.


  1. 1.
    S. Cherry, Edholm’s law of bandwidth, IEEE Spectrum, vol. 41, no. 7, pp. 58–60 (2004).Google Scholar
  2. 2.
    D. W. Matolak, A. Kodi, and S. Kaya, Channel modeling for wireless networks-on-chips, IEEE Communications Magazine, vol. 51, no. 6, pp. 180–186, (2013).Google Scholar
  3. 3.
    D. W. Matolak, A. Kodi, S. Kaya, D. DiTomaso, S. Laha, and W. Rayess, Wireless networks-on-chips: architecture, wireless channel, and devices, IEEE Wireless Communications Magazine, vol. 19, no. 5, pp. 58–65, (2012).Google Scholar
  4. 4.
    IEEE, IEEE Std 802.15.3c-2009 (Amendment to IEEE Std 802.15.3-2003) (2009).Google Scholar
  5. 5.
    T. Kürner and S. Priebe. Towards THz communications—status in research, standardization and regulation, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 35, no. 1, pp. 53–62, (2014).Google Scholar
  6. 6.
    S. Redfield, Understanding the ultra-wideband channel within a computer chassis, m.s. thesis, Oregon State University, (2010).Google Scholar
  7. 7.
    A. Maltsev, R. Maslermikov, A. Sevastyanov, A. Lomayev, A. Khoryaev, A. Davydov, and V. Ssorin, Characteristics of indoor millimeter-wave channel at 60 GHz in application to perspective WLAN system, in Proceedings 4th European Conference Antennas Propagation (EuCAP), Barcelona, Spain, pp. 1–5, (2010).Google Scholar
  8. 8.
    S. Priebe, C. Jastrow, M. Jacob, T. Kleine-Ostmann, T. Schrader, and T. Kürner, Channel and propagation measurements at 300 GHz, IEEE Transactions Antennas Propagation, vol. 59, no. 5, pp. 1688–1698, (2011).Google Scholar
  9. 9.
    J. Kunisch and J. Pamp. Ultra-wideband double vertical knife-edge model for obstruction of a ray by a person, in Proceedings IEEE International Conference Ultra-Wideband (ICUWB), vol. 2, pp. 17–20, (2008).Google Scholar
  10. 10.
    M. Jacob, S. Priebe, A. Maltsev, A. Lomayev, V. Erceg, and T. Kürner, A ray tracing based stochastic human blockage model for the IEEE 802.11ad 60 GHz channel model, in Proceedings 5th European Conference Antennas Propagation (EuCAP), Rome, Italy, pp. 3084–3088, (2011).Google Scholar
  11. 11.
    M. Jacob, S. Priebe, M. Peter, and M. Wisotzki, Fundamental Analyses of 60 GHz Human Blockage, in Proceedings 7th European Conference Antennas Propagation (EuCAP), Gothenburg, Sweden, pp. 1–5, (2013).Google Scholar
  12. 12.
    M. Jacob, S. Priebe, R. Dickhoff, T. Kleine-Ostmann, T. Schrader, and T. Kürner, Diffraction in mm and sub-mm Wave indoor propagation channels, IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 833–844, (2012).Google Scholar
  13. 13.
    T. Kürner, A. Fricke, S. Rey, P.L. Bars, A. Mounir, and T. Kleine-Ostmann, Measurements and Modeling of Basic Propagation Characteristics for Intra-Device Communications at 60 GHz and 300 GHz, Journal of Infrared, Millimeter, and Terahertz Waves, vol. 36, no. 2, pp. 144–158, (2015).Google Scholar
  14. 14.
    Rappaport, Theodore S. Wireless Communications Principles and Practice Second Edition, Prentice-Hall, Inc. 19th Printing, pp. 108, (2010).Google Scholar
  15. 15.
    K. Guan, Z. Zhong, B. Ai, and T. Kürner, Propagation measurements and modeling of crossing bridges on high-speed railway at930 MHz, IEEE Transactions Vehicles Technology, vol. 63, no. 2, pp. 502–517, (2014).Google Scholar
  16. 16.
    K. Guan, Z. Zhong, B. Ai, and T. Kürner, Empirical models for extra propagation loss of train stations on high-speed railway, IEEE Transactions Antenna Propagation, vol. 62, no. 3, pp. 1395–1408, (2014).Google Scholar
  17. 17.
    A.G. Longley and P.L. Rice, Prediction of Tropospheric Radio Transmission Loss over Irregular Terrain—A Computer Method, (1968).Google Scholar
  18. 18.
    J. Epstein and D.W. Peterson, An experimental study of wave propagation at 850 M, in Proceedings IRE, vol. 41, no. 5, pp. 595–611, (1953).Google Scholar
  19. 19.
    J. Deygout, Multiple knife-edge diffraction of microwaves, IEEE Transactions Antenna Propagation, vol. AP-14, pp. 480–489, (1966).Google Scholar
  20. 20.
    W.C.Y. Lee, Mobile communications engineering, McGraw Hill Pulications, New York, (1985).Google Scholar
  21. 21.
    K.L. Chee and T. Kürner, Effect of terrain irregularities and clutter distribution on wave propagation at 3.5 GHz in suburban area, in Proceedings EuCAP, Barcelona, pp. 1–5, (2010).Google Scholar
  22. 22.
    K. Guan, Z. Zhong, B. Ai, R. He, B. Chen, Y. Li, and C. Briso, Complete propagation modeling in tunnels, IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 741–744, (2013).Google Scholar
  23. 23.
    CST MICROWAVE STUDIO [Online]. Available: CSTMWS.
  24. 24.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ke Guan
    • 1
    • 2
  • Bo Ai
    • 1
    Email author
  • Alexander Fricke
    • 2
  • Danping He
    • 1
  • Zhangdui Zhong
    • 1
  • David W. Matolak
    • 3
  • Thomas Kürner
    • 2
  1. 1.State Key Laboratory of Rail Traffic Control and SafetyBeijing Jiaotong UniversityBeijingChina
  2. 2.Institut für NachrichtentechnikTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Department of Electrical Engineering University of South CarolinaColumbiaUSA

Personalised recommendations